Properties

Label 6.41e3_257e4.12t111.1c1
Dimension 6
Group $V_4^2:(S_3\times C_2)$
Conductor $ 41^{3} \cdot 257^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$V_4^2:(S_3\times C_2)$
Conductor:$300665822507321= 41^{3} \cdot 257^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 8 x^{6} + 6 x^{5} + 17 x^{4} - 13 x^{3} + x^{2} + 17 x - 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T111
Parity: Even
Determinant: 1.41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 36.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 21 a^{2} + 3 a + 8 + \left(9 a^{2} + 1\right)\cdot 23 + \left(11 a^{2} + 7 a + 13\right)\cdot 23^{2} + \left(13 a^{2} + 21 a + 13\right)\cdot 23^{3} + \left(15 a^{2} + 4 a + 2\right)\cdot 23^{4} + \left(a^{2} + 14 a + 13\right)\cdot 23^{5} + \left(6 a^{2} + 20 a + 1\right)\cdot 23^{6} + \left(12 a^{2} + 11 a + 13\right)\cdot 23^{7} + \left(4 a^{2} + 4 a + 12\right)\cdot 23^{8} + \left(7 a^{2} + 22\right)\cdot 23^{9} + \left(2 a^{2} + 22 a + 12\right)\cdot 23^{10} + \left(10 a^{2} + 5 a + 19\right)\cdot 23^{11} + \left(12 a^{2} + 15 a + 17\right)\cdot 23^{12} + \left(14 a^{2} + 18 a + 2\right)\cdot 23^{13} + \left(13 a^{2} + 11 a\right)\cdot 23^{14} + \left(15 a^{2} + 13 a + 15\right)\cdot 23^{15} + \left(14 a^{2} + 8 a + 7\right)\cdot 23^{16} + \left(6 a^{2} + 21 a + 16\right)\cdot 23^{17} + \left(9 a^{2} + 14 a + 17\right)\cdot 23^{18} + \left(10 a^{2} + 20\right)\cdot 23^{19} + \left(15 a^{2} + a + 15\right)\cdot 23^{20} + \left(5 a^{2} + 3 a + 9\right)\cdot 23^{21} + \left(12 a^{2} + 2 a + 2\right)\cdot 23^{22} + \left(21 a^{2} + 7 a + 6\right)\cdot 23^{23} + \left(18 a^{2} + 4 a + 20\right)\cdot 23^{24} + \left(a + 12\right)\cdot 23^{25} + \left(14 a^{2} + 19 a + 7\right)\cdot 23^{26} + \left(6 a^{2} + 4 a + 17\right)\cdot 23^{27} + \left(12 a^{2} + 20 a + 9\right)\cdot 23^{28} + \left(16 a^{2} + 7 a + 22\right)\cdot 23^{29} + \left(16 a^{2} + 2 a + 11\right)\cdot 23^{30} + \left(6 a^{2} + 18 a + 11\right)\cdot 23^{31} + \left(3 a^{2} + 5 a + 2\right)\cdot 23^{32} + \left(10 a^{2} + 8 a + 12\right)\cdot 23^{33} + \left(18 a^{2} + 12 a + 7\right)\cdot 23^{34} + \left(4 a + 11\right)\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 2 }$ $=$ $ 13 a^{2} + 6 a + 5 + \left(5 a^{2} + 4 a + 3\right)\cdot 23 + \left(3 a^{2} + 7 a + 2\right)\cdot 23^{2} + \left(15 a + 11\right)\cdot 23^{3} + \left(21 a^{2} + a + 17\right)\cdot 23^{4} + \left(21 a^{2} + 11 a + 1\right)\cdot 23^{5} + \left(2 a^{2} + 10 a + 5\right)\cdot 23^{6} + \left(9 a^{2} + 17 a + 1\right)\cdot 23^{7} + \left(11 a^{2} + 6 a + 14\right)\cdot 23^{8} + \left(20 a^{2} + 9 a + 9\right)\cdot 23^{9} + \left(17 a^{2} + 4 a + 18\right)\cdot 23^{10} + \left(4 a^{2} + 6 a + 4\right)\cdot 23^{11} + \left(a^{2} + 18\right)\cdot 23^{12} + \left(14 a^{2} + 10 a + 9\right)\cdot 23^{13} + \left(19 a^{2} + 21 a\right)\cdot 23^{14} + \left(12 a^{2} + 3 a + 19\right)\cdot 23^{15} + \left(10 a^{2} + 5 a + 9\right)\cdot 23^{16} + \left(10 a^{2} + 16 a + 21\right)\cdot 23^{17} + \left(3 a^{2} + 9\right)\cdot 23^{18} + \left(6 a^{2} + 15 a + 7\right)\cdot 23^{19} + \left(17 a^{2} + 9 a + 18\right)\cdot 23^{20} + \left(2 a^{2} + 6 a + 5\right)\cdot 23^{21} + \left(12 a^{2} + 22 a + 2\right)\cdot 23^{22} + \left(20 a^{2} + 3 a + 20\right)\cdot 23^{23} + \left(21 a^{2} + 16 a + 8\right)\cdot 23^{24} + \left(16 a^{2} + 11\right)\cdot 23^{25} + \left(6 a^{2} + 11 a + 5\right)\cdot 23^{26} + \left(17 a^{2} + 8 a + 16\right)\cdot 23^{27} + \left(12 a^{2} + 18 a + 2\right)\cdot 23^{28} + \left(10 a^{2} + 22\right)\cdot 23^{29} + \left(16 a + 20\right)\cdot 23^{30} + \left(4 a^{2} + 22 a + 7\right)\cdot 23^{31} + \left(6 a^{2} + 11 a + 6\right)\cdot 23^{32} + \left(13 a^{2} + 11 a + 16\right)\cdot 23^{33} + \left(22 a^{2} + 5 a + 20\right)\cdot 23^{34} + \left(8 a^{2} + 4 a + 6\right)\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 3 }$ $=$ $ 18 + 8\cdot 23 + 17\cdot 23^{2} + 5\cdot 23^{3} + 22\cdot 23^{4} + 15\cdot 23^{5} + 22\cdot 23^{7} + 15\cdot 23^{8} + 8\cdot 23^{9} + 18\cdot 23^{10} + 7\cdot 23^{11} + 3\cdot 23^{12} + 12\cdot 23^{13} + 5\cdot 23^{14} + 18\cdot 23^{15} + 18\cdot 23^{16} + 23^{17} + 8\cdot 23^{18} + 10\cdot 23^{19} + 7\cdot 23^{20} + 13\cdot 23^{21} + 17\cdot 23^{22} + 14\cdot 23^{23} + 16\cdot 23^{24} + 11\cdot 23^{25} + 23^{26} + 12\cdot 23^{27} + 23^{28} + 13\cdot 23^{29} + 6\cdot 23^{30} + 19\cdot 23^{31} + 7\cdot 23^{32} + 6\cdot 23^{33} + 17\cdot 23^{34} + 12\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 21 a + 20 + \left(17 a^{2} + 4 a + 6\right)\cdot 23 + \left(6 a^{2} + 17 a + 20\right)\cdot 23^{2} + \left(11 a^{2} + 6 a + 16\right)\cdot 23^{3} + \left(15 a^{2} + 11\right)\cdot 23^{4} + \left(2 a^{2} + 17 a + 21\right)\cdot 23^{5} + \left(2 a^{2} + 11 a + 11\right)\cdot 23^{6} + \left(3 a^{2} + 13 a + 17\right)\cdot 23^{7} + \left(21 a^{2} + 16 a + 6\right)\cdot 23^{8} + \left(21 a^{2} + 4 a + 8\right)\cdot 23^{9} + \left(3 a^{2} + 4 a + 12\right)\cdot 23^{10} + \left(17 a^{2} + 11 a + 16\right)\cdot 23^{11} + \left(22 a^{2} + 2 a + 8\right)\cdot 23^{12} + \left(12 a^{2} + 13 a + 1\right)\cdot 23^{13} + \left(6 a^{2} + 16 a + 15\right)\cdot 23^{14} + \left(11 a^{2} + 18 a + 7\right)\cdot 23^{15} + \left(5 a^{2} + 15 a + 3\right)\cdot 23^{16} + \left(6 a^{2} + 7 a + 22\right)\cdot 23^{17} + \left(14 a^{2} + 22 a\right)\cdot 23^{18} + \left(6 a^{2} + 5 a + 20\right)\cdot 23^{19} + \left(11 a^{2} + 7 a + 13\right)\cdot 23^{20} + \left(21 a^{2} + 6 a + 19\right)\cdot 23^{21} + \left(19 a^{2} + 17 a + 18\right)\cdot 23^{22} + \left(19 a^{2} + 11 a + 14\right)\cdot 23^{23} + \left(11 a^{2} + 7 a + 8\right)\cdot 23^{24} + \left(7 a^{2} + 6 a + 2\right)\cdot 23^{25} + \left(a^{2} + 16 a\right)\cdot 23^{26} + \left(17 a^{2} + 20 a + 13\right)\cdot 23^{27} + \left(17 a^{2} + 22 a + 16\right)\cdot 23^{28} + \left(16 a^{2} + 8 a + 16\right)\cdot 23^{29} + \left(12 a^{2} + 14 a + 13\right)\cdot 23^{30} + \left(8 a^{2} + a + 5\right)\cdot 23^{31} + \left(9 a^{2} + 7 a + 13\right)\cdot 23^{32} + \left(7 a^{2} + 17 a + 18\right)\cdot 23^{33} + \left(3 a^{2} + 14 a + 21\right)\cdot 23^{34} + \left(4 a^{2} + 12 a + 18\right)\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 14 a + 19 + \left(7 a^{2} + 18 a + 5\right)\cdot 23 + \left(8 a^{2} + 8 a + 1\right)\cdot 23^{2} + \left(9 a^{2} + 9 a + 8\right)\cdot 23^{3} + \left(9 a^{2} + 16 a + 17\right)\cdot 23^{4} + \left(22 a^{2} + 20 a + 17\right)\cdot 23^{5} + \left(13 a^{2} + 14 a + 19\right)\cdot 23^{6} + \left(a^{2} + 16 a + 21\right)\cdot 23^{7} + \left(7 a^{2} + 11 a + 15\right)\cdot 23^{8} + \left(18 a^{2} + 13 a + 6\right)\cdot 23^{9} + \left(2 a^{2} + 19 a + 21\right)\cdot 23^{10} + \left(8 a^{2} + 10 a + 16\right)\cdot 23^{11} + \left(9 a^{2} + 7 a + 13\right)\cdot 23^{12} + \left(17 a^{2} + 17 a + 6\right)\cdot 23^{13} + \left(12 a^{2} + 12 a + 14\right)\cdot 23^{14} + \left(17 a^{2} + 5 a + 17\right)\cdot 23^{15} + \left(20 a^{2} + 9 a + 15\right)\cdot 23^{16} + \left(5 a^{2} + 8 a + 7\right)\cdot 23^{17} + \left(10 a^{2} + 7 a + 11\right)\cdot 23^{18} + \left(6 a^{2} + 7 a + 15\right)\cdot 23^{19} + \left(13 a^{2} + 12 a + 20\right)\cdot 23^{20} + \left(14 a^{2} + 13 a + 13\right)\cdot 23^{21} + \left(21 a^{2} + 21 a + 22\right)\cdot 23^{22} + \left(3 a^{2} + 11 a + 20\right)\cdot 23^{23} + \left(5 a^{2} + 2 a + 1\right)\cdot 23^{24} + \left(5 a^{2} + 21 a + 11\right)\cdot 23^{25} + \left(2 a^{2} + 15 a + 22\right)\cdot 23^{26} + \left(22 a^{2} + 9 a + 14\right)\cdot 23^{27} + \left(20 a^{2} + 7 a + 13\right)\cdot 23^{28} + \left(18 a^{2} + 14 a + 2\right)\cdot 23^{29} + \left(5 a^{2} + 4 a + 5\right)\cdot 23^{30} + \left(12 a^{2} + 5 a + 11\right)\cdot 23^{31} + \left(13 a^{2} + 5 a + 8\right)\cdot 23^{32} + \left(22 a^{2} + 3 a + 13\right)\cdot 23^{33} + \left(4 a^{2} + 5 a + 12\right)\cdot 23^{34} + \left(13 a^{2} + 14 a + 12\right)\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 20 a + 9 + \left(11 a^{2} + 4 a + 22\right)\cdot 23 + \left(12 a^{2} + 16 a + 4\right)\cdot 23^{2} + \left(17 a^{2} + 22 a + 2\right)\cdot 23^{3} + \left(8 a^{2} + 4 a + 18\right)\cdot 23^{4} + \left(7 a^{2} + 21 a + 4\right)\cdot 23^{5} + \left(6 a + 17\right)\cdot 23^{6} + \left(3 a^{2} + 12 a + 9\right)\cdot 23^{7} + \left(9 a^{2} + 12 a + 21\right)\cdot 23^{8} + \left(19 a^{2} + 12 a + 4\right)\cdot 23^{9} + \left(18 a^{2} + 13 a + 9\right)\cdot 23^{10} + \left(15 a^{2} + 18 a + 22\right)\cdot 23^{11} + \left(21 a^{2} + 17 a + 14\right)\cdot 23^{12} + \left(2 a^{2} + 3 a + 18\right)\cdot 23^{13} + \left(6 a^{2} + 7 a + 6\right)\cdot 23^{14} + \left(4 a^{2} + 6 a + 21\right)\cdot 23^{15} + \left(6 a^{2} + a + 11\right)\cdot 23^{16} + \left(12 a^{2} + 10 a + 22\right)\cdot 23^{17} + \left(5 a^{2} + 8 a + 19\right)\cdot 23^{18} + \left(20 a^{2} + 15 a + 22\right)\cdot 23^{19} + \left(21 a^{2} + 19 a + 4\right)\cdot 23^{20} + \left(6 a^{2} + 2 a\right)\cdot 23^{21} + \left(10 a^{2} + 8 a + 6\right)\cdot 23^{22} + \left(17 a + 4\right)\cdot 23^{23} + \left(19 a^{2} + 22 a + 18\right)\cdot 23^{24} + \left(6 a^{2} + 3 a + 16\right)\cdot 23^{25} + \left(9 a^{2} + 15 a + 10\right)\cdot 23^{26} + \left(10 a^{2} + 17 a + 19\right)\cdot 23^{27} + \left(22 a^{2} + 15 a + 22\right)\cdot 23^{28} + \left(4 a^{2} + 12 a\right)\cdot 23^{29} + \left(4 a^{2} + 6 a + 10\right)\cdot 23^{30} + \left(9 a^{2} + 12 a + 6\right)\cdot 23^{31} + \left(2 a^{2} + 6 a + 19\right)\cdot 23^{32} + \left(18 a^{2} + 4 a + 9\right)\cdot 23^{33} + \left(11 a^{2} + 2 a + 2\right)\cdot 23^{34} + \left(8 a^{2} + 15 a + 17\right)\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 7 }$ $=$ $ 7 + 6\cdot 23 + 23^{2} + 2\cdot 23^{3} + 13\cdot 23^{4} + 12\cdot 23^{5} + 14\cdot 23^{6} + 16\cdot 23^{7} + 5\cdot 23^{8} + 15\cdot 23^{9} + 22\cdot 23^{10} + 15\cdot 23^{11} + 11\cdot 23^{12} + 16\cdot 23^{13} + 6\cdot 23^{14} + 21\cdot 23^{15} + 5\cdot 23^{16} + 3\cdot 23^{17} + 7\cdot 23^{18} + 4\cdot 23^{19} + 10\cdot 23^{20} + 7\cdot 23^{21} + 23^{22} + 19\cdot 23^{23} + 19\cdot 23^{24} + 21\cdot 23^{25} + 13\cdot 23^{26} + 14\cdot 23^{27} + 16\cdot 23^{28} + 2\cdot 23^{29} + 11\cdot 23^{30} + 13\cdot 23^{31} + 18\cdot 23^{32} + 17\cdot 23^{33} + 4\cdot 23^{34} + 8\cdot 23^{35} +O\left(23^{ 36 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 5 a + 7 + \left(17 a^{2} + 13 a + 14\right)\cdot 23 + \left(3 a^{2} + 12 a + 8\right)\cdot 23^{2} + \left(17 a^{2} + 16 a + 9\right)\cdot 23^{3} + \left(21 a^{2} + 17 a + 12\right)\cdot 23^{4} + \left(12 a^{2} + 7 a + 4\right)\cdot 23^{5} + \left(20 a^{2} + 4 a + 21\right)\cdot 23^{6} + \left(16 a^{2} + 20 a + 12\right)\cdot 23^{7} + \left(15 a^{2} + 16 a + 22\right)\cdot 23^{8} + \left(4 a^{2} + 5 a + 15\right)\cdot 23^{9} + \left(5 a + 22\right)\cdot 23^{10} + \left(13 a^{2} + 16 a + 10\right)\cdot 23^{11} + \left(a^{2} + 2 a + 3\right)\cdot 23^{12} + \left(7 a^{2} + 6 a + 1\right)\cdot 23^{13} + \left(10 a^{2} + 22 a + 20\right)\cdot 23^{14} + \left(7 a^{2} + 20 a + 17\right)\cdot 23^{15} + \left(11 a^{2} + 5 a + 18\right)\cdot 23^{16} + \left(4 a^{2} + 5 a + 19\right)\cdot 23^{17} + \left(3 a^{2} + 15 a + 16\right)\cdot 23^{18} + \left(19 a^{2} + a + 13\right)\cdot 23^{19} + \left(12 a^{2} + 19 a\right)\cdot 23^{20} + \left(17 a^{2} + 13 a + 22\right)\cdot 23^{21} + \left(15 a^{2} + 20 a + 20\right)\cdot 23^{22} + \left(2 a^{2} + 16 a + 14\right)\cdot 23^{23} + \left(15 a^{2} + 15 a + 20\right)\cdot 23^{24} + \left(8 a^{2} + 12 a + 3\right)\cdot 23^{25} + \left(12 a^{2} + 14 a + 7\right)\cdot 23^{26} + \left(18 a^{2} + 7 a + 7\right)\cdot 23^{27} + \left(5 a^{2} + 7 a + 8\right)\cdot 23^{28} + \left(a^{2} + a + 11\right)\cdot 23^{29} + \left(6 a^{2} + 2 a + 12\right)\cdot 23^{30} + \left(5 a^{2} + 9 a + 16\right)\cdot 23^{31} + \left(11 a^{2} + 9 a + 15\right)\cdot 23^{32} + \left(20 a^{2} + a + 20\right)\cdot 23^{33} + \left(7 a^{2} + 6 a + 4\right)\cdot 23^{34} + \left(10 a^{2} + 18 a + 4\right)\cdot 23^{35} +O\left(23^{ 36 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,7,5)(3,8,6)$
$(5,7)(6,8)$
$(3,8)(4,6)$
$(1,2)(3,8)(4,6)(5,7)$
$(3,4)(6,8)$
$(1,3)(2,4)(5,6)(7,8)$
$(1,7)(2,5)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$6$
$3$$2$$(1,5)(2,7)(3,8)(4,6)$$-2$
$4$$2$$(1,8)(2,6)(3,5)(4,7)$$0$
$6$$2$$(1,2)(3,8)(4,6)(5,7)$$-2$
$6$$2$$(1,5)(2,7)$$2$
$12$$2$$(1,3)(2,4)(5,6)(7,8)$$0$
$12$$2$$(1,2)(3,4)$$-2$
$32$$3$$(2,5,7)(3,4,6)$$0$
$12$$4$$(1,8,5,3)(2,4,7,6)$$0$
$12$$4$$(1,3,5,8)(2,4,7,6)$$0$
$12$$4$$(1,5,2,7)(3,6,4,8)$$2$
$24$$4$$(1,3,7,8)(2,4,5,6)$$0$
$24$$4$$(3,6,4,8)(5,7)$$0$
$32$$6$$(1,8)(2,4,5,6,7,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.