Properties

Label 3.7e2_379e2.4t4.1c1
Dimension 3
Group $A_4$
Conductor $ 7^{2} \cdot 379^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$7038409= 7^{2} \cdot 379^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 45 x^{2} + 70 x - 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 50\cdot 83 + 72\cdot 83^{2} + 66\cdot 83^{3} + 69\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 72\cdot 83 + 59\cdot 83^{2} + 32\cdot 83^{3} + 23\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 59 + 77\cdot 83 + 43\cdot 83^{2} + 72\cdot 83^{3} + 9\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 74 + 48\cdot 83 + 72\cdot 83^{2} + 76\cdot 83^{3} + 62\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.