Properties

Label 3.6429888.6t11.a.a
Dimension $3$
Group $S_4\times C_2$
Conductor $6429888$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4\times C_2$
Conductor: \(6429888\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 61^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.6429888.1
Galois orbit size: $1$
Smallest permutation container: $S_4\times C_2$
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.13176.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 2x^{4} + x^{3} + 15x^{2} - 16x + 12 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: \( x^{2} + 63x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 28 a + 45 + \left(55 a + 3\right)\cdot 67 + \left(12 a + 2\right)\cdot 67^{2} + \left(65 a + 10\right)\cdot 67^{3} + \left(30 a + 4\right)\cdot 67^{4} + \left(30 a + 55\right)\cdot 67^{5} + \left(9 a + 29\right)\cdot 67^{6} + 2 a\cdot 67^{7} +O(67^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a + 14 + \left(48 a + 9\right)\cdot 67 + \left(52 a + 19\right)\cdot 67^{2} + \left(45 a + 35\right)\cdot 67^{3} + \left(18 a + 52\right)\cdot 67^{4} + \left(31 a + 13\right)\cdot 67^{5} + \left(41 a + 33\right)\cdot 67^{6} + \left(7 a + 5\right)\cdot 67^{7} +O(67^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 39 a + 23 + \left(11 a + 63\right)\cdot 67 + \left(54 a + 64\right)\cdot 67^{2} + \left(a + 56\right)\cdot 67^{3} + \left(36 a + 62\right)\cdot 67^{4} + \left(36 a + 11\right)\cdot 67^{5} + \left(57 a + 37\right)\cdot 67^{6} + \left(64 a + 66\right)\cdot 67^{7} +O(67^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 57 a + 54 + \left(18 a + 57\right)\cdot 67 + \left(14 a + 47\right)\cdot 67^{2} + \left(21 a + 31\right)\cdot 67^{3} + \left(48 a + 14\right)\cdot 67^{4} + \left(35 a + 53\right)\cdot 67^{5} + \left(25 a + 33\right)\cdot 67^{6} + \left(59 a + 61\right)\cdot 67^{7} +O(67^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 + 32\cdot 67 + 34\cdot 67^{2} + 10\cdot 67^{3} + 40\cdot 67^{4} + 50\cdot 67^{5} + 43\cdot 67^{6} + 48\cdot 67^{7} +O(67^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 53 + 34\cdot 67 + 32\cdot 67^{2} + 56\cdot 67^{3} + 26\cdot 67^{4} + 16\cdot 67^{5} + 23\cdot 67^{6} + 18\cdot 67^{7} +O(67^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2,5)(3,4,6)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,4)(5,6)$$-3$
$3$$2$$(1,3)$$1$
$3$$2$$(1,3)(2,4)$$-1$
$6$$2$$(2,5)(4,6)$$-1$
$6$$2$$(1,3)(2,5)(4,6)$$1$
$8$$3$$(1,2,5)(3,4,6)$$0$
$6$$4$$(1,4,3,2)$$-1$
$6$$4$$(1,6,3,5)(2,4)$$1$
$8$$6$$(1,4,6,3,2,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.