Properties

Label 2.1957.8t12.a.a
Dimension $2$
Group $\SL(2,3)$
Conductor $1957$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\SL(2,3)$
Conductor: \(1957\)\(\medspace = 19 \cdot 103 \)
Artin stem field: Galois closure of 8.8.14667743362801.1
Galois orbit size: $2$
Smallest permutation container: $\SL(2,3)$
Parity: even
Determinant: 1.1957.3t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.3829849.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 25x^{6} + 188x^{4} - 453x^{2} + 49 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{3} + 2x + 9 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 + 2\cdot 11 + 9\cdot 11^{2} + 10\cdot 11^{3} + 8\cdot 11^{4} + 8\cdot 11^{5} + 6\cdot 11^{6} + 2\cdot 11^{7} + 11^{8} + 7\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a^{2} + 10 a + 8 + \left(4 a^{2} + 4 a + 4\right)\cdot 11 + \left(3 a^{2} + 7 a\right)\cdot 11^{2} + \left(4 a^{2} + a + 8\right)\cdot 11^{3} + \left(6 a^{2} + 2 a + 8\right)\cdot 11^{4} + \left(a^{2} + a + 2\right)\cdot 11^{5} + \left(a^{2} + 8 a + 1\right)\cdot 11^{6} + \left(a^{2} + 10 a + 2\right)\cdot 11^{7} + \left(3 a^{2} + 6 a + 4\right)\cdot 11^{8} + \left(5 a^{2} + 2\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a^{2} + 10 a + 9 + \left(9 a^{2} + a + 2\right)\cdot 11 + \left(4 a^{2} + a + 3\right)\cdot 11^{2} + \left(2 a^{2} + 10 a + 8\right)\cdot 11^{3} + \left(6 a^{2} + 10 a\right)\cdot 11^{4} + \left(10 a^{2} + 4 a + 6\right)\cdot 11^{5} + \left(7 a^{2} + 3 a + 3\right)\cdot 11^{6} + \left(7 a^{2} + 4 a + 2\right)\cdot 11^{7} + \left(5 a^{2} + 9 a\right)\cdot 11^{8} + \left(8 a^{2} + 5\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a^{2} + 2 + \left(5 a^{2} + 8 a + 6\right)\cdot 11 + \left(a^{2} + 4 a + 1\right)\cdot 11^{2} + \left(9 a^{2} + 8 a + 7\right)\cdot 11^{3} + \left(10 a^{2} + 8 a + 3\right)\cdot 11^{4} + \left(8 a^{2} + 3 a + 5\right)\cdot 11^{5} + \left(6 a^{2} + 6 a + 1\right)\cdot 11^{6} + \left(6 a^{2} + 4 a + 2\right)\cdot 11^{7} + \left(2 a^{2} + 2 a + 7\right)\cdot 11^{8} + \left(3 a^{2} + 10\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 + 8\cdot 11 + 11^{2} + 2\cdot 11^{4} + 2\cdot 11^{5} + 4\cdot 11^{6} + 8\cdot 11^{7} + 9\cdot 11^{8} + 3\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 8 a^{2} + a + 3 + \left(6 a^{2} + 6 a + 6\right)\cdot 11 + \left(7 a^{2} + 3 a + 10\right)\cdot 11^{2} + \left(6 a^{2} + 9 a + 2\right)\cdot 11^{3} + \left(4 a^{2} + 8 a + 2\right)\cdot 11^{4} + \left(9 a^{2} + 9 a + 8\right)\cdot 11^{5} + \left(9 a^{2} + 2 a + 9\right)\cdot 11^{6} + \left(9 a^{2} + 8\right)\cdot 11^{7} + \left(7 a^{2} + 4 a + 6\right)\cdot 11^{8} + \left(5 a^{2} + 10 a + 8\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 4 a^{2} + a + 2 + \left(a^{2} + 9 a + 8\right)\cdot 11 + \left(6 a^{2} + 9 a + 7\right)\cdot 11^{2} + \left(8 a^{2} + 2\right)\cdot 11^{3} + \left(4 a^{2} + 10\right)\cdot 11^{4} + \left(6 a + 4\right)\cdot 11^{5} + \left(3 a^{2} + 7 a + 7\right)\cdot 11^{6} + \left(3 a^{2} + 6 a + 8\right)\cdot 11^{7} + \left(5 a^{2} + a + 10\right)\cdot 11^{8} + \left(2 a^{2} + 10 a + 5\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 7 a^{2} + 9 + \left(5 a^{2} + 3 a + 4\right)\cdot 11 + \left(9 a^{2} + 6 a + 9\right)\cdot 11^{2} + \left(a^{2} + 2 a + 3\right)\cdot 11^{3} + \left(2 a + 7\right)\cdot 11^{4} + \left(2 a^{2} + 7 a + 5\right)\cdot 11^{5} + \left(4 a^{2} + 4 a + 9\right)\cdot 11^{6} + \left(4 a^{2} + 6 a + 8\right)\cdot 11^{7} + \left(8 a^{2} + 8 a + 3\right)\cdot 11^{8} + \left(7 a^{2} + 10 a\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,5,2)(3,8,7,4)$
$(1,2,8)(4,5,6)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,4,5,8)(2,3,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(1,4,3)(5,8,7)$$-\zeta_{3}$
$4$$3$$(1,3,4)(5,7,8)$$\zeta_{3} + 1$
$6$$4$$(1,6,5,2)(3,8,7,4)$$0$
$4$$6$$(1,3,6,5,7,2)(4,8)$$\zeta_{3}$
$4$$6$$(1,2,7,5,6,3)(4,8)$$-\zeta_{3} - 1$