Properties

Label 2.195364.4t3.a.a
Dimension $2$
Group $D_{4}$
Conductor $195364$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(195364\)\(\medspace = 2^{2} \cdot 13^{2} \cdot 17^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.13284752.3
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{17})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 10x^{2} + 212x + 628 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 10 + 80\cdot 89 + 42\cdot 89^{2} + 17\cdot 89^{3} + 28\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 52 + 32\cdot 89 + 29\cdot 89^{2} + 17\cdot 89^{3} + 67\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 57 + 26\cdot 89 + 89^{2} + 38\cdot 89^{3} + 53\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 61 + 38\cdot 89 + 15\cdot 89^{2} + 16\cdot 89^{3} + 29\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$

The blue line marks the conjugacy class containing complex conjugation.