Properties

Label 2.1951.8t12.a.a
Dimension $2$
Group $\SL(2,3)$
Conductor $1951$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\SL(2,3)$
Conductor: \(1951\)
Artin stem field: Galois closure of 8.8.14488688572801.1
Galois orbit size: $2$
Smallest permutation container: $\SL(2,3)$
Parity: even
Determinant: 1.1951.3t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.3806401.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} - 28x^{6} + 22x^{5} + 268x^{4} + 47x^{3} - 872x^{2} - 707x + 147 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{3} + 2x + 11 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 9 + \left(2 a^{2} + 8 a + 4\right)\cdot 13 + \left(7 a^{2} + 3 a + 4\right)\cdot 13^{2} + \left(3 a^{2} + 5 a + 1\right)\cdot 13^{3} + \left(11 a^{2} + 4 a + 6\right)\cdot 13^{4} + \left(7 a^{2} + 2 a + 3\right)\cdot 13^{5} + \left(a^{2} + 7 a + 7\right)\cdot 13^{6} + \left(7 a^{2} + 4 a + 4\right)\cdot 13^{7} + \left(a^{2} + a + 5\right)\cdot 13^{8} + \left(11 a^{2} + a + 10\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 a^{2} + 2 a + 2 + \left(12 a^{2} + 4 a + 6\right)\cdot 13 + \left(12 a^{2} + 9 a + 3\right)\cdot 13^{2} + \left(12 a^{2} + 11 a + 5\right)\cdot 13^{3} + \left(11 a^{2} + 5 a + 11\right)\cdot 13^{4} + \left(4 a + 2\right)\cdot 13^{5} + \left(11 a + 5\right)\cdot 13^{6} + \left(6 a^{2} + 9 a + 7\right)\cdot 13^{7} + \left(8 a^{2} + 7 a + 1\right)\cdot 13^{8} + \left(9 a^{2} + 2 a + 4\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 8 + 5\cdot 13 + 8\cdot 13^{2} + 11\cdot 13^{3} + 8\cdot 13^{4} + 8\cdot 13^{5} + 6\cdot 13^{6} + 2\cdot 13^{8} + 6\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a^{2} + 8 a + 3 + \left(11 a^{2} + 8\right)\cdot 13 + \left(5 a^{2} + 2\right)\cdot 13^{2} + \left(9 a^{2} + 9 a + 9\right)\cdot 13^{3} + \left(2 a^{2} + 2 a + 7\right)\cdot 13^{4} + \left(4 a^{2} + 6 a + 11\right)\cdot 13^{5} + \left(11 a^{2} + 7 a + 2\right)\cdot 13^{6} + \left(12 a^{2} + 11 a + 12\right)\cdot 13^{7} + \left(2 a^{2} + 3 a + 2\right)\cdot 13^{8} + \left(5 a^{2} + 9 a + 11\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 + 5\cdot 13 + 13^{2} + 8\cdot 13^{3} + 2\cdot 13^{4} + 12\cdot 13^{5} + 6\cdot 13^{6} + 8\cdot 13^{7} + 2\cdot 13^{8} + 12\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 2 a + 11 + \left(8 a^{2} + 12 a + 4\right)\cdot 13 + \left(10 a^{2} + 7\right)\cdot 13^{2} + \left(8 a^{2} + 8\right)\cdot 13^{3} + \left(11 a^{2} + 5 a + 7\right)\cdot 13^{4} + \left(4 a^{2} + 8 a + 6\right)\cdot 13^{5} + \left(9 a^{2} + 11\right)\cdot 13^{6} + \left(3 a^{2} + 9 a + 6\right)\cdot 13^{7} + \left(5 a^{2} + 8 a + 6\right)\cdot 13^{8} + \left(6 a^{2} + 8 a + 2\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 10 a^{2} + a + 7 + \left(4 a^{2} + 10 a\right)\cdot 13 + \left(5 a + 11\right)\cdot 13^{2} + \left(11 a^{2} + 6 a + 2\right)\cdot 13^{3} + \left(8 a^{2} + 5 a + 8\right)\cdot 13^{4} + \left(3 a + 9\right)\cdot 13^{5} + \left(3 a^{2} + 10 a + 11\right)\cdot 13^{6} + \left(11 a^{2} + 8 a + 3\right)\cdot 13^{7} + 9\cdot 13^{8} + \left(a^{2} + 9 a + 12\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 3 a^{2} + 10 a + 2 + \left(3 a + 3\right)\cdot 13 + \left(2 a^{2} + 6 a\right)\cdot 13^{2} + \left(6 a^{2} + 6 a + 5\right)\cdot 13^{3} + \left(5 a^{2} + 2 a + 12\right)\cdot 13^{4} + \left(7 a^{2} + a + 9\right)\cdot 13^{5} + \left(2 a + 12\right)\cdot 13^{6} + \left(11 a^{2} + 8 a + 7\right)\cdot 13^{7} + \left(6 a^{2} + 3 a + 8\right)\cdot 13^{8} + \left(5 a^{2} + 8 a + 5\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7,2)(3,8,5,4)$
$(1,6,3)(2,5,7)$
$(1,8,7,4)(2,5,6,3)$
$(1,7)(2,6)(3,5)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,7)(2,6)(3,5)(4,8)$$-2$
$4$$3$$(1,2,4)(6,8,7)$$\zeta_{3} + 1$
$4$$3$$(1,4,2)(6,7,8)$$-\zeta_{3}$
$6$$4$$(1,8,7,4)(2,5,6,3)$$0$
$4$$6$$(1,8,2,7,4,6)(3,5)$$\zeta_{3}$
$4$$6$$(1,6,4,7,2,8)(3,5)$$-\zeta_{3} - 1$