Properties

Label 2.949.8t12.a.a
Dimension $2$
Group $\SL(2,3)$
Conductor $949$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\SL(2,3)$
Conductor: \(949\)\(\medspace = 13 \cdot 73 \)
Artin stem field: Galois closure of 8.0.811082161201.1
Galois orbit size: $2$
Smallest permutation container: $\SL(2,3)$
Parity: even
Determinant: 1.949.3t1.b.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.900601.2

Defining polynomial

$f(x)$$=$ \( x^{8} + 19x^{6} + 116x^{4} + 255x^{2} + 169 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{3} + 2x + 18 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 22 a^{2} + 16 a + 20 + \left(14 a^{2} + 10 a + 2\right)\cdot 23 + \left(15 a^{2} + 2 a + 3\right)\cdot 23^{2} + \left(6 a^{2} + 3 a + 9\right)\cdot 23^{3} + \left(4 a^{2} + 14 a + 11\right)\cdot 23^{4} + \left(13 a^{2} + a + 3\right)\cdot 23^{5} + \left(22 a^{2} + 11 a + 9\right)\cdot 23^{6} + \left(14 a^{2} + 7 a + 13\right)\cdot 23^{7} + \left(a^{2} + 18 a + 8\right)\cdot 23^{8} + \left(3 a^{2} + 18 a + 20\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 3\cdot 23 + 23^{2} + 5\cdot 23^{3} + 12\cdot 23^{4} + 3\cdot 23^{5} + 3\cdot 23^{6} + 19\cdot 23^{7} + 9\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a^{2} + 9 a + 7 + \left(12 a^{2} + a + 10\right)\cdot 23 + \left(5 a^{2} + 16 a + 17\right)\cdot 23^{2} + \left(13 a^{2} + 22 a + 9\right)\cdot 23^{3} + \left(21 a^{2} + 19 a + 15\right)\cdot 23^{4} + \left(2 a^{2} + 2\right)\cdot 23^{5} + \left(9 a^{2} + 18 a + 10\right)\cdot 23^{6} + \left(9 a^{2} + 11\right)\cdot 23^{7} + \left(18 a^{2} + 8 a + 10\right)\cdot 23^{8} + \left(15 a^{2} + 21 a + 12\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a^{2} + 16 a + 5 + \left(20 a^{2} + 13 a + 2\right)\cdot 23 + \left(12 a^{2} + 13 a + 7\right)\cdot 23^{2} + \left(6 a^{2} + 19 a + 1\right)\cdot 23^{3} + \left(17 a^{2} + 5 a + 21\right)\cdot 23^{4} + \left(12 a^{2} + 22 a + 2\right)\cdot 23^{5} + \left(9 a^{2} + 6 a + 7\right)\cdot 23^{6} + \left(17 a^{2} + 16 a + 1\right)\cdot 23^{7} + \left(16 a^{2} + 12 a + 21\right)\cdot 23^{8} + \left(12 a^{2} + 2 a + 17\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( a^{2} + 7 a + 3 + \left(8 a^{2} + 12 a + 20\right)\cdot 23 + \left(7 a^{2} + 20 a + 19\right)\cdot 23^{2} + \left(16 a^{2} + 19 a + 13\right)\cdot 23^{3} + \left(18 a^{2} + 8 a + 11\right)\cdot 23^{4} + \left(9 a^{2} + 21 a + 19\right)\cdot 23^{5} + \left(11 a + 13\right)\cdot 23^{6} + \left(8 a^{2} + 15 a + 9\right)\cdot 23^{7} + \left(21 a^{2} + 4 a + 14\right)\cdot 23^{8} + \left(19 a^{2} + 4 a + 2\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 18 + 19\cdot 23 + 21\cdot 23^{2} + 17\cdot 23^{3} + 10\cdot 23^{4} + 19\cdot 23^{5} + 19\cdot 23^{6} + 3\cdot 23^{7} + 22\cdot 23^{8} + 13\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 19 a^{2} + 14 a + 16 + \left(10 a^{2} + 21 a + 12\right)\cdot 23 + \left(17 a^{2} + 6 a + 5\right)\cdot 23^{2} + \left(9 a^{2} + 13\right)\cdot 23^{3} + \left(a^{2} + 3 a + 7\right)\cdot 23^{4} + \left(20 a^{2} + 22 a + 20\right)\cdot 23^{5} + \left(13 a^{2} + 4 a + 12\right)\cdot 23^{6} + \left(13 a^{2} + 22 a + 11\right)\cdot 23^{7} + \left(4 a^{2} + 14 a + 12\right)\cdot 23^{8} + \left(7 a^{2} + a + 10\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 18 a^{2} + 7 a + 18 + \left(2 a^{2} + 9 a + 20\right)\cdot 23 + \left(10 a^{2} + 9 a + 15\right)\cdot 23^{2} + \left(16 a^{2} + 3 a + 21\right)\cdot 23^{3} + \left(5 a^{2} + 17 a + 1\right)\cdot 23^{4} + \left(10 a^{2} + 20\right)\cdot 23^{5} + \left(13 a^{2} + 16 a + 15\right)\cdot 23^{6} + \left(5 a^{2} + 6 a + 21\right)\cdot 23^{7} + \left(6 a^{2} + 10 a + 1\right)\cdot 23^{8} + \left(10 a^{2} + 20 a + 5\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,5,6)(3,8,7,4)$
$(1,3,6)(2,5,7)$
$(1,8,5,4)(2,3,6,7)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(2,4,3)(6,8,7)$$\zeta_{3} + 1$
$4$$3$$(2,3,4)(6,7,8)$$-\zeta_{3}$
$6$$4$$(1,2,5,6)(3,8,7,4)$$0$
$4$$6$$(1,5)(2,7,4,6,3,8)$$\zeta_{3}$
$4$$6$$(1,5)(2,8,3,6,4,7)$$-\zeta_{3} - 1$