Properties

Label 2.2743.8t12.a.a
Dimension $2$
Group $\SL(2,3)$
Conductor $2743$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\SL(2,3)$
Conductor: \(2743\)\(\medspace = 13 \cdot 211 \)
Artin stem field: Galois closure of 8.8.56611313354401.1
Galois orbit size: $2$
Smallest permutation container: $\SL(2,3)$
Parity: even
Determinant: 1.2743.3t1.b.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.4.7524049.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 33x^{6} + 300x^{4} - 861x^{2} + 289 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{3} + 4x + 17 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 1 + 13\cdot 19 + 14\cdot 19^{2} + 2\cdot 19^{3} + 6\cdot 19^{4} + 5\cdot 19^{5} + 6\cdot 19^{6} + 12\cdot 19^{7} + 3\cdot 19^{8} + 2\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 a^{2} + 16 a + 5 + \left(4 a^{2} + 4 a + 13\right)\cdot 19 + \left(13 a^{2} + 12 a + 8\right)\cdot 19^{2} + \left(6 a^{2} + a\right)\cdot 19^{3} + \left(2 a^{2} + 6 a + 2\right)\cdot 19^{4} + \left(6 a^{2} + 16 a + 10\right)\cdot 19^{5} + \left(14 a^{2} + 14 a + 6\right)\cdot 19^{6} + \left(a^{2} + 10 a + 12\right)\cdot 19^{7} + \left(4 a + 8\right)\cdot 19^{8} + \left(12 a^{2} + 8 a + 7\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 a^{2} + 14 a + 5 + \left(15 a^{2} + 4 a + 8\right)\cdot 19 + \left(18 a^{2} + 12 a + 13\right)\cdot 19^{2} + \left(5 a^{2} + 14 a + 1\right)\cdot 19^{3} + \left(13 a^{2} + 12 a + 8\right)\cdot 19^{4} + \left(7 a^{2} + 9 a + 1\right)\cdot 19^{5} + \left(9 a^{2} + 3 a + 6\right)\cdot 19^{6} + \left(7 a^{2} + 12 a + 12\right)\cdot 19^{7} + \left(12 a^{2} + 13 a + 5\right)\cdot 19^{8} + \left(10 a^{2} + 6 a + 2\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 a^{2} + 17 a + 18 + \left(11 a^{2} + 18 a + 1\right)\cdot 19 + \left(5 a^{2} + 18 a + 1\right)\cdot 19^{2} + \left(18 a^{2} + 12 a + 6\right)\cdot 19^{3} + \left(10 a^{2} + 6 a + 12\right)\cdot 19^{4} + \left(a^{2} + 12 a + 10\right)\cdot 19^{5} + \left(14 a^{2} + 7 a + 18\right)\cdot 19^{6} + \left(5 a^{2} + a + 3\right)\cdot 19^{7} + \left(12 a^{2} + 9 a + 3\right)\cdot 19^{8} + \left(17 a^{2} + 17 a + 16\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 18 + 5\cdot 19 + 4\cdot 19^{2} + 16\cdot 19^{3} + 12\cdot 19^{4} + 13\cdot 19^{5} + 12\cdot 19^{6} + 6\cdot 19^{7} + 15\cdot 19^{8} + 16\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 a^{2} + 3 a + 14 + \left(14 a^{2} + 14 a + 5\right)\cdot 19 + \left(5 a^{2} + 6 a + 10\right)\cdot 19^{2} + \left(12 a^{2} + 17 a + 18\right)\cdot 19^{3} + \left(16 a^{2} + 12 a + 16\right)\cdot 19^{4} + \left(12 a^{2} + 2 a + 8\right)\cdot 19^{5} + \left(4 a^{2} + 4 a + 12\right)\cdot 19^{6} + \left(17 a^{2} + 8 a + 6\right)\cdot 19^{7} + \left(18 a^{2} + 14 a + 10\right)\cdot 19^{8} + \left(6 a^{2} + 10 a + 11\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 3 a^{2} + 5 a + 14 + \left(3 a^{2} + 14 a + 10\right)\cdot 19 + \left(6 a + 5\right)\cdot 19^{2} + \left(13 a^{2} + 4 a + 17\right)\cdot 19^{3} + \left(5 a^{2} + 6 a + 10\right)\cdot 19^{4} + \left(11 a^{2} + 9 a + 17\right)\cdot 19^{5} + \left(9 a^{2} + 15 a + 12\right)\cdot 19^{6} + \left(11 a^{2} + 6 a + 6\right)\cdot 19^{7} + \left(6 a^{2} + 5 a + 13\right)\cdot 19^{8} + \left(8 a^{2} + 12 a + 16\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 5 a^{2} + 2 a + 1 + \left(7 a^{2} + 17\right)\cdot 19 + \left(13 a^{2} + 17\right)\cdot 19^{2} + \left(6 a + 12\right)\cdot 19^{3} + \left(8 a^{2} + 12 a + 6\right)\cdot 19^{4} + \left(17 a^{2} + 6 a + 8\right)\cdot 19^{5} + \left(4 a^{2} + 11 a\right)\cdot 19^{6} + \left(13 a^{2} + 17 a + 15\right)\cdot 19^{7} + \left(6 a^{2} + 9 a + 15\right)\cdot 19^{8} + \left(a^{2} + a + 2\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4)(2,8,5)$
$(1,8,5,4)(2,3,6,7)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,6,5,2)(3,4,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(1,2,3)(5,6,7)$$\zeta_{3} + 1$
$4$$3$$(1,3,2)(5,7,6)$$-\zeta_{3}$
$6$$4$$(1,8,5,4)(2,3,6,7)$$0$
$4$$6$$(1,7,2,5,3,6)(4,8)$$\zeta_{3}$
$4$$6$$(1,6,3,5,2,7)(4,8)$$-\zeta_{3} - 1$