Basic invariants
| Dimension: | $2$ |
| Group: | $\SL(2,3)$ |
| Conductor: | \(2743\)\(\medspace = 13 \cdot 211 \) |
| Artin stem field: | Galois closure of 8.8.56611313354401.1 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $\SL(2,3)$ |
| Parity: | even |
| Determinant: | 1.2743.3t1.b.a |
| Projective image: | $A_4$ |
| Projective stem field: | Galois closure of 4.4.7524049.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{8} - 33x^{6} + 300x^{4} - 861x^{2} + 289 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{3} + 4x + 17 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 1 + 13\cdot 19 + 14\cdot 19^{2} + 2\cdot 19^{3} + 6\cdot 19^{4} + 5\cdot 19^{5} + 6\cdot 19^{6} + 12\cdot 19^{7} + 3\cdot 19^{8} + 2\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 2 }$ | $=$ |
\( 2 a^{2} + 16 a + 5 + \left(4 a^{2} + 4 a + 13\right)\cdot 19 + \left(13 a^{2} + 12 a + 8\right)\cdot 19^{2} + \left(6 a^{2} + a\right)\cdot 19^{3} + \left(2 a^{2} + 6 a + 2\right)\cdot 19^{4} + \left(6 a^{2} + 16 a + 10\right)\cdot 19^{5} + \left(14 a^{2} + 14 a + 6\right)\cdot 19^{6} + \left(a^{2} + 10 a + 12\right)\cdot 19^{7} + \left(4 a + 8\right)\cdot 19^{8} + \left(12 a^{2} + 8 a + 7\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 3 }$ | $=$ |
\( 16 a^{2} + 14 a + 5 + \left(15 a^{2} + 4 a + 8\right)\cdot 19 + \left(18 a^{2} + 12 a + 13\right)\cdot 19^{2} + \left(5 a^{2} + 14 a + 1\right)\cdot 19^{3} + \left(13 a^{2} + 12 a + 8\right)\cdot 19^{4} + \left(7 a^{2} + 9 a + 1\right)\cdot 19^{5} + \left(9 a^{2} + 3 a + 6\right)\cdot 19^{6} + \left(7 a^{2} + 12 a + 12\right)\cdot 19^{7} + \left(12 a^{2} + 13 a + 5\right)\cdot 19^{8} + \left(10 a^{2} + 6 a + 2\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 4 }$ | $=$ |
\( 14 a^{2} + 17 a + 18 + \left(11 a^{2} + 18 a + 1\right)\cdot 19 + \left(5 a^{2} + 18 a + 1\right)\cdot 19^{2} + \left(18 a^{2} + 12 a + 6\right)\cdot 19^{3} + \left(10 a^{2} + 6 a + 12\right)\cdot 19^{4} + \left(a^{2} + 12 a + 10\right)\cdot 19^{5} + \left(14 a^{2} + 7 a + 18\right)\cdot 19^{6} + \left(5 a^{2} + a + 3\right)\cdot 19^{7} + \left(12 a^{2} + 9 a + 3\right)\cdot 19^{8} + \left(17 a^{2} + 17 a + 16\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 5 }$ | $=$ |
\( 18 + 5\cdot 19 + 4\cdot 19^{2} + 16\cdot 19^{3} + 12\cdot 19^{4} + 13\cdot 19^{5} + 12\cdot 19^{6} + 6\cdot 19^{7} + 15\cdot 19^{8} + 16\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 6 }$ | $=$ |
\( 17 a^{2} + 3 a + 14 + \left(14 a^{2} + 14 a + 5\right)\cdot 19 + \left(5 a^{2} + 6 a + 10\right)\cdot 19^{2} + \left(12 a^{2} + 17 a + 18\right)\cdot 19^{3} + \left(16 a^{2} + 12 a + 16\right)\cdot 19^{4} + \left(12 a^{2} + 2 a + 8\right)\cdot 19^{5} + \left(4 a^{2} + 4 a + 12\right)\cdot 19^{6} + \left(17 a^{2} + 8 a + 6\right)\cdot 19^{7} + \left(18 a^{2} + 14 a + 10\right)\cdot 19^{8} + \left(6 a^{2} + 10 a + 11\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 7 }$ | $=$ |
\( 3 a^{2} + 5 a + 14 + \left(3 a^{2} + 14 a + 10\right)\cdot 19 + \left(6 a + 5\right)\cdot 19^{2} + \left(13 a^{2} + 4 a + 17\right)\cdot 19^{3} + \left(5 a^{2} + 6 a + 10\right)\cdot 19^{4} + \left(11 a^{2} + 9 a + 17\right)\cdot 19^{5} + \left(9 a^{2} + 15 a + 12\right)\cdot 19^{6} + \left(11 a^{2} + 6 a + 6\right)\cdot 19^{7} + \left(6 a^{2} + 5 a + 13\right)\cdot 19^{8} + \left(8 a^{2} + 12 a + 16\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 8 }$ | $=$ |
\( 5 a^{2} + 2 a + 1 + \left(7 a^{2} + 17\right)\cdot 19 + \left(13 a^{2} + 17\right)\cdot 19^{2} + \left(6 a + 12\right)\cdot 19^{3} + \left(8 a^{2} + 12 a + 6\right)\cdot 19^{4} + \left(17 a^{2} + 6 a + 8\right)\cdot 19^{5} + \left(4 a^{2} + 11 a\right)\cdot 19^{6} + \left(13 a^{2} + 17 a + 15\right)\cdot 19^{7} + \left(6 a^{2} + 9 a + 15\right)\cdot 19^{8} + \left(a^{2} + a + 2\right)\cdot 19^{9} +O(19^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | ✓ |
| $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $-2$ | |
| $4$ | $3$ | $(1,2,3)(5,6,7)$ | $\zeta_{3} + 1$ | |
| $4$ | $3$ | $(1,3,2)(5,7,6)$ | $-\zeta_{3}$ | |
| $6$ | $4$ | $(1,8,5,4)(2,3,6,7)$ | $0$ | |
| $4$ | $6$ | $(1,7,2,5,3,6)(4,8)$ | $\zeta_{3}$ | |
| $4$ | $6$ | $(1,6,3,5,2,7)(4,8)$ | $-\zeta_{3} - 1$ |