Properties

Label 1.665.6t1.a.a
Dimension $1$
Group $C_6$
Conductor $665$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(665\)\(\medspace = 5 \cdot 7 \cdot 19 \)
Artin field: Galois closure of 6.6.39112590125.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{665}(144,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - 92x^{4} - 37x^{3} + 2004x^{2} + 3335x - 505 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \( x^{2} + 49x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 43 a + 48 + \left(9 a + 39\right)\cdot 53 + \left(17 a + 18\right)\cdot 53^{2} + \left(36 a + 40\right)\cdot 53^{3} + \left(35 a + 25\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a + 40 + \left(43 a + 22\right)\cdot 53 + \left(35 a + 36\right)\cdot 53^{2} + \left(16 a + 43\right)\cdot 53^{3} + \left(17 a + 6\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 43 a + 27 + \left(9 a + 26\right)\cdot 53 + \left(17 a + 30\right)\cdot 53^{2} + \left(36 a + 21\right)\cdot 53^{3} + \left(35 a + 6\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 43 a + 12 + \left(9 a + 45\right)\cdot 53 + \left(17 a + 47\right)\cdot 53^{2} + \left(36 a + 10\right)\cdot 53^{3} + \left(35 a + 20\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 10 a + 8 + \left(43 a + 36\right)\cdot 53 + \left(35 a + 24\right)\cdot 53^{2} + \left(16 a + 9\right)\cdot 53^{3} + \left(17 a + 26\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 a + 25 + \left(43 a + 41\right)\cdot 53 + 35 a\cdot 53^{2} + \left(16 a + 33\right)\cdot 53^{3} + \left(17 a + 20\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3,5,4,2)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,3,4)(2,6,5)$$\zeta_{3}$
$1$$3$$(1,4,3)(2,5,6)$$-\zeta_{3} - 1$
$1$$6$$(1,6,3,5,4,2)$$\zeta_{3} + 1$
$1$$6$$(1,2,4,5,3,6)$$-\zeta_{3}$

The blue line marks the conjugacy class containing complex conjugation.