These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.56b2.777 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.778 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.779 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.780 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.781 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.782 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.783 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.784 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.793 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.794 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.795 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.796 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.797 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.798 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.799 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.800 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.809 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.810 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.811 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.812 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.813 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.814 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.815 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.816 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.825 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.826 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.827 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.828 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.829 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.830 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.831 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.832 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^7.(C_2\times D_4)$ (as 16T1413) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1925 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1926 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1927 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1928 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1929 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1930 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1931 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1932 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1937 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1938 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1939 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1940 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1949 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1950 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1951 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1952 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1957 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.1958 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.C_2\wr C_4$ (as 16T1426) |
$2048$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |