These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.56b2.2009 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2010 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2011 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2012 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2013 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2014 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2015 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2016 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2025 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2026 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2027 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2028 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2029 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2030 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2031 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.2032 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 24\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |