Properties

Label 2.2.2.6a1.4-1.4.16b
Base 2.2.2.6a1.4
Degree \(4\)
e \(4\)
f \(1\)
c \(16\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + b_{15} \pi^{4} x^{3} + \left(c_{18} \pi^{5} + b_{14} \pi^{4} + b_{10} \pi^{3}\right) x^{2} + \left(b_{17} \pi^{5} + a_{13} \pi^{4}\right) x + c_{16} \pi^{5} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: 2.2.2.6a1.4
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Absolute Artin slopes: $[3,4,\frac{17}{4}]$
Swan slopes: $[4,\frac{9}{2}]$
Means: $\langle2,\frac{13}{4}\rangle$
Rams: $(4,5)$
Field count: $768$ (complete)
Ambiguity: $4$
Mass: $768$
Absolute Mass: $384$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_4^2:D_4$ (show 8), $C_4^2:D_4$ (show 8), $C_2\wr D_4$ (show 8), $C_4^2:D_4$ (show 8), $C_2^4.Q_{16}$ (show 32), $C_2^6.D_4$ (show 32), $C_2^6.D_4$ (show 32), $C_2^5.\OD_{16}$ (show 32), $C_2^3.C_2\wr C_4$ (show 64), $C_2^6:C_8$ (show 32), $(C_2^2\times C_4^2):D_4$ (show 16), $(C_2^2\times C_4^2):Q_8$ (show 16), $C_2^5.D_8$ (show 32), $C_2^5.\SD_{16}$ (show 32), $C_2^6:D_4$ (show 16), $C_2^5.(C_2\times D_4)$ (show 32), $C_2^6:Q_8$ (show 16), $C_2^5.(C_2\times D_4)$ (show 32), $C_2^5.(C_2\times D_4)$ (show 64), $C_2^4.C_2\wr C_4$ (show 128), $C_2^7.(C_2\times D_4)$ (show 64), $C_2^5.C_2\wr C_4$ (show 64) (incomplete)
Hidden Artin slopes: $[2,2,\frac{7}{2}]$ (show 32), $[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ (show 320), $[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ (show 64), $[2,2,3,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ (show 64), $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ (show 32), $[2,2,3,4,\frac{7}{2}]_{2}$ (show 32), $[2,3,\frac{7}{2},4]^{2}$ (show 64), $[2,2,\frac{7}{2},\frac{7}{2}]$ (show 32), $[2,2,3,\frac{7}{2},4]^{2}$ (show 32), not computed (show 64), $[2,2,3,\frac{7}{2}]^{2}$ (show 32) (incomplete)
Indices of inseparability: $[21,16,8,0]$
Associated inertia: $[1,1,1]$
Jump Set: $[1,3,7,15]$

Fields


Showing 1-50 of 768

Next   displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.8.56b1.389 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.390 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.391 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.392 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.393 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.394 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.395 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.396 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.397 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.398 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.399 $( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.400 $( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.401 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.402 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.403 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.404 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.405 $( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.406 $( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.407 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.408 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.409 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.410 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.411 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.412 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.413 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.414 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.415 $( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.416 $( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.417 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.418 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^6.D_4$ (as 16T897) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{4}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{4}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.419 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.420 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^4.Q_{16}$ (as 16T702) $256$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]$ $[1,1,\frac{5}{2},\frac{5}{2}]$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.421 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.422 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.423 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.424 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.425 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.426 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.427 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.428 $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.429 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.430 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.431 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.432 $( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.433 $( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.434 $( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.435 $( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.436 $( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + \left(16 x + 8\right) ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.D_8$ (as 16T954) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.437 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.2.8.56b1.438 $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ $C_2^5.\SD_{16}$ (as 16T955) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[21, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
Next   displayed columns for results