$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$
    
    
    
         
    
    
         
    
  | 
  | Base field: |   $\Q_{2}$
       | 
| Degree $d$: |  $16$ | 
      | Ramification index $e$: |  $8$ | 
      | Residue field degree $f$: |  $2$ | 
      | Discriminant exponent $c$: |  $56$ | 
      | Discriminant root field: |  $\Q_{2}$ | 
      | Root number: |  $-1$ | 
        | $\Aut(K/\Q_{2})$:
             |  
      $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[3, 4, \frac{17}{4}]$ | 
      | Visible Swan slopes: | $[2,3,\frac{13}{4}]$ | 
      | Means: | $\langle1, 2, \frac{21}{8}\rangle$ | 
      | Rams: | $(2, 4, 5)$ | 
      | Jump set: | $[1, 3, 7, 15]$ | 
      | Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
  | Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of 
    \( x^{2} + x + 1 \)
    
    
    
         
    
    
         
    
 | 
  | Relative Eisenstein polynomial: | 
    \( x^{8} + \left(8 t + 8\right) x^{6} + \left(8 t + 8\right) x^{5} + 4 t x^{4} + 16 x^{2} + 8 t + 2 \)
    
    $\ \in\Q_{2}(t)[x]$
    
         
    
    
         
    
 | 
      
    
  
  | Galois degree: | 
      $2048$
     | 
  | Galois group: | 
      $C_2^5.C_2\wr C_4$ (as 16T1426)
     | 
  | Inertia group: | 
      intransitive group not computed
     | 
  | Wild inertia group: | 
    not computed
     | 
  | Galois unramified degree: | 
    $4$
     | 
  | Galois tame degree: | 
    $1$
     | 
  | Galois Artin slopes: | 
    $[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]$
     | 
| Galois Swan slopes: | 
    $[1,1,2,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]$
     | 
  | Galois mean slope: | 
    $4.09765625$
     | 
  | Galois splitting model: | 
    $x^{16} - 4 x^{14} - 34 x^{12} + 256 x^{10} - 329 x^{8} - 760 x^{6} + 850 x^{4} + 1500 x^{2} + 625$
    
    
    
         
    
    
         
    
 |