Show commands: Magma
Group invariants
| Abstract group: | $C_2^5.C_2\wr C_4$ |
| |
| Order: | $2048=2^{11}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $6$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $1426$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,11,2,12)(3,9)(4,10)(5,14,7,16,6,13,8,15)$, $(1,7,2,8)(3,5)(4,6)(9,13,11,15,10,14,12,16)$, $(1,7,14,12,2,8,13,11)(3,5,16,9,4,6,15,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ $32$: $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 $64$: $(C_4^2 : C_2):C_2$ x 2, $((C_8 : C_2):C_2):C_2$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 32T239 $128$: 16T219, 16T222, 16T227, 16T230, 16T234, 16T235, 16T302 $256$: 32T3918, 32T4019, 32T4050 $512$: 16T940 $1024$: 32T63498 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T1346 x 8, 16T1391 x 8, 16T1423 x 8, 16T1426 x 7, 32T97929 x 8, 32T97930 x 4, 32T97931 x 4, 32T97932 x 8, 32T97933 x 8, 32T97934 x 8, 32T97935 x 4, 32T97936 x 4, 32T97937 x 4, 32T97938 x 8, 32T97939 x 4, 32T98462 x 4, 32T98463 x 4, 32T98464 x 8, 32T98465 x 4, 32T98466 x 8, 32T98467 x 8, 32T98468 x 4, 32T98469 x 8, 32T98470 x 8, 32T98471 x 8, 32T98472 x 4, 32T98473 x 4, 32T98474 x 8, 32T98475 x 8, 32T98476 x 8, 32T98477 x 4, 32T98478 x 8, 32T98479 x 4, 32T98480 x 4, 32T98481 x 4, 32T98482 x 4, 32T98483 x 4, 32T98834 x 4, 32T98835 x 4, 32T98836 x 4, 32T98837 x 4, 32T98838 x 4, 32T98839 x 4, 32T98871 x 4, 32T98872 x 4, 32T98873 x 4, 32T98874 x 4, 32T98875 x 4, 32T98876 x 4, 32T115877 x 4, 32T141653 x 2, 32T142026 x 2, 32T142186 x 2, 32T142211 x 2, 32T142212 x 2, 32T142391 x 2, 32T175935 x 2, 32T180453 x 2, 32T180523 x 2, 32T182448 x 2, 32T182585 x 2, 32T182719 x 2, 32T191337 x 2, 32T204375 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
59 x 59 character table
Regular extensions
Data not computed