The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.42a1.7 |
$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.8 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.11 |
$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.12 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.21 |
$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.22 |
$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.25 |
$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.26 |
$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.37 |
$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.38 |
$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.49 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.50 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.53 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.54 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.71 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |
| 2.2.8.42a1.72 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 2$ |
$C_2^6.D_4$ (as 16T834) |
$512$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{4}$ |
$[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[\frac{3}{2},2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[14, 6, 6, 0]$ |
$[1, 1]$ |
$z^6 + 1,z + 1$ |
$[1, 3, 11, 19]$ |