Properties

Label 2.2.8.42a1.25
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(42\)
Galois group $C_2^6.D_4$ (as 16T834)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $42$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{15}{4}]$
Visible Swan slopes:$[1,1,\frac{11}{4}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}\rangle$
Rams:$(1, 1, 8)$
Jump set:$[1, 3, 11, 19]$
Roots of unity:$12 = (2^{ 2 } - 1) \cdot 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-5})$, 2.2.2.4a1.1, 2.2.2.4a2.2 x2, 2.1.4.6a1.1 x2, 2.2.4.12a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(4 t + 4\right) x^{7} + \left(8 t + 2\right) x^{6} + 8 t x^{5} + \left(8 t + 8\right) x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[14, 6, 6, 0]$

Invariants of the Galois closure

Galois degree: $512$
Galois group: $C_2^6.D_4$ (as 16T834)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]$
Galois Swan slopes: $[1,1,\frac{3}{2},2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]$
Galois mean slope: $3.5$
Galois splitting model:not computed