Show commands: Magma
Group invariants
| Abstract group: | $C_2^6.D_4$ |
| |
| Order: | $512=2^{9}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $5$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $834$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,8,2,7)(3,5)(4,6)(9,11)(10,12)(13,15)(14,16)$, $(1,8)(2,7)(3,6,4,5)(9,11,10,12)(13,15,14,16)$, $(1,13)(2,14)(3,12,4,11)(5,15)(6,16)(7,9,8,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $Z_8 : Z_8^\times$, $C_4\wr C_2$ x 2, $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$, 16T32 $64$: $((C_8 : C_2):C_2):C_2$ x 2, 16T76, 16T111, 32T264 $128$: 16T227, 16T234, 16T254 $256$: 32T4016 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T834 x 3, 16T862 x 4, 16T897 x 8, 16T900 x 4, 16T921 x 4, 32T10002 x 4, 32T10003 x 4, 32T10004 x 4, 32T10005 x 2, 32T10006 x 4, 32T10007 x 4, 32T10008 x 2, 32T10009 x 2, 32T10010 x 2, 32T10011 x 2, 32T10012 x 2, 32T10013 x 4, 32T10014 x 2, 32T10015 x 2, 32T10016 x 4, 32T10017 x 8, 32T10018 x 2, 32T10019 x 2, 32T10020 x 2, 32T10021 x 2, 32T10022 x 4, 32T10023 x 4, 32T10024 x 4, 32T10262 x 2, 32T10263 x 2, 32T10264 x 2, 32T10265 x 2, 32T10266 x 2, 32T10267 x 2, 32T10448 x 4, 32T10449 x 4, 32T10450 x 4, 32T10451 x 4, 32T10452 x 4, 32T10453 x 4, 32T10462 x 4, 32T10463 x 4, 32T10464 x 4, 32T10584 x 4, 32T10585 x 4, 32T10586 x 4, 32T22167 x 2, 32T22180 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2C | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(15,16)$ |
| 2D | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 2)( 3, 4)( 9,10)(15,16)$ |
| 2E | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(5,6)(7,8)$ |
| 2F | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(15,16)$ |
| 2G | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 5, 6)( 9,10)(11,12)(13,14)(15,16)$ |
| 2H | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(1,2)(5,6)$ |
| 2I | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 3, 4)( 5, 6)( 9,10)(11,12)$ |
| 2J | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 2)( 7, 8)( 9,10)(11,12)$ |
| 2K | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2L | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(1,2)(7,8)$ |
| 2M | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 3, 4)( 5, 6)(11,12)(15,16)$ |
| 2N | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 2)( 5, 6)(13,14)(15,16)$ |
| 2O | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 1, 2)( 7, 8)(11,12)(13,14)$ |
| 2P | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 1, 2)( 5, 6)(11,12)(13,14)$ |
| 2Q | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,11)( 4,12)( 5,15)( 6,16)( 7, 9)( 8,10)$ |
| 4A1 | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 4)( 2, 3)( 5, 7, 6, 8)( 9,16,10,15)(11,13)(12,14)$ |
| 4A-1 | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 4)( 2, 3)( 5, 8, 6, 7)( 9,15,10,16)(11,13)(12,14)$ |
| 4B1 | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 4)( 2, 3)( 5, 7, 6, 8)( 9,15)(10,16)(11,14,12,13)$ |
| 4B-1 | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 4)( 2, 3)( 5, 8, 6, 7)( 9,15)(10,16)(11,13,12,14)$ |
| 4C | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 4)( 2, 3)( 5, 8, 6, 7)( 9,16,10,15)(11,13)(12,14)$ |
| 4D | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 4, 2, 3)( 5, 8)( 6, 7)( 9,15,10,16)(11,14)(12,13)$ |
| 4E | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,14)( 2,13)( 3,11)( 4,12)( 5,16, 6,15)( 7,10, 8, 9)$ |
| 4F | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,13, 2,14)( 3,12, 4,11)( 5,15)( 6,16)( 7, 9)( 8,10)$ |
| 4G | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,13, 2,14)( 3,12, 4,11)( 5,16, 6,15)( 7,10, 8, 9)$ |
| 4H1 | $4^{3},2^{2}$ | $16$ | $4$ | $11$ | $( 1, 8, 2, 7)( 3, 6)( 4, 5)( 9,12,10,11)(13,16,14,15)$ |
| 4H-1 | $4^{3},2^{2}$ | $16$ | $4$ | $11$ | $( 1, 7, 2, 8)( 3, 6)( 4, 5)( 9,11,10,12)(13,15,14,16)$ |
| 4I1 | $4^{3},2^{2}$ | $16$ | $4$ | $11$ | $( 1, 8)( 2, 7)( 3, 6, 4, 5)( 9,12,10,11)(13,16,14,15)$ |
| 4I-1 | $4^{3},2^{2}$ | $16$ | $4$ | $11$ | $( 1, 7)( 2, 8)( 3, 6, 4, 5)( 9,11,10,12)(13,15,14,16)$ |
| 4J1 | $4,2^{6}$ | $16$ | $4$ | $9$ | $( 1, 8, 2, 7)( 3, 6)( 4, 5)( 9,11)(10,12)(13,16)(14,15)$ |
| 4J-1 | $4,2^{6}$ | $16$ | $4$ | $9$ | $( 1, 7, 2, 8)( 3, 6)( 4, 5)( 9,12)(10,11)(13,15)(14,16)$ |
| 4K1 | $4,2^{6}$ | $16$ | $4$ | $9$ | $( 1, 8)( 2, 7)( 3, 6, 4, 5)( 9,11)(10,12)(13,16)(14,15)$ |
| 4K-1 | $4,2^{6}$ | $16$ | $4$ | $9$ | $( 1, 7)( 2, 8)( 3, 6, 4, 5)( 9,12)(10,11)(13,15)(14,16)$ |
| 4L | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,13)( 2,14)( 3,11, 4,12)( 5,15, 6,16)( 7,10)( 8, 9)$ |
| 4M | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,13, 2,14)( 3,12)( 4,11)( 5,16, 6,15)( 7,10)( 8, 9)$ |
| 8A1 | $8,4^{2}$ | $32$ | $8$ | $13$ | $( 1,10, 4,16)( 2, 9, 3,15)( 5,11, 7,14, 6,12, 8,13)$ |
| 8A-1 | $8,4^{2}$ | $32$ | $8$ | $13$ | $( 1,16, 4,10)( 2,15, 3, 9)( 5,13, 8,12, 6,14, 7,11)$ |
| 8B1 | $8,4^{2}$ | $32$ | $8$ | $13$ | $( 1,10, 4,16)( 2, 9, 3,15)( 5,11, 8,13, 6,12, 7,14)$ |
| 8B-1 | $8,4^{2}$ | $32$ | $8$ | $13$ | $( 1,16, 4,10)( 2,15, 3, 9)( 5,14, 7,12, 6,13, 8,11)$ |
Malle's constant $a(G)$: $1/2$
Character table
41 x 41 character table
Regular extensions
Data not computed