The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
    | Galois group: | $C_4^2:D_4$ (show 4), $C_2\wr D_4$ (show 8), $C_4^2:D_4$ (show 8), $C_4^2:D_4$ (show 4), $C_2^4.Q_{16}$ (show 16), $C_2^6.D_4$ (show 16), $C_2^6.D_4$ (show 16), $C_2^5.C_2\wr C_4$ (show 128), $C_2^7.C_2\wr C_4$ (show 128), $C_2^7.C_2\wr C_4$ (show 128), $C_2^7.C_2\wr C_4$ (show 128), $C_2^7.C_2\wr C_4$ (show 128) (incomplete) | 
  | Hidden Artin slopes: | $[2,2,3,\frac{7}{2},\frac{7}{2},\frac{7}{2},\frac{7}{2},\frac{15}{4}]^{2}$ (show 256), $[3,3,3,\frac{7}{2},\frac{7}{2},\frac{7}{2}]^{2}$ (show 32), not computed (show 352), $[3,\frac{7}{2},\frac{7}{2}]$ (show 24), $[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]^{2}$ (show 16), $[2,3,\frac{7}{2},\frac{7}{2}]^{2}$ (show 16), $[\frac{5}{2},3,\frac{7}{2},\frac{7}{2}]$ (show 16) (incomplete) | 
    | Indices of inseparability: | $[14,6,4,0]$ (show 512), $[14,6,6,0]$ (show 200) | 
  | Associated inertia: | $[1,1]$ (show 200), $[2,1]$ (show 512) | 
  | Jump Set: | $[1,2,7,15]$ (show 256), $[1,3,6,16]$ (show 128), $[1,3,7,15]$ (show 256), $[1,3,11,19]$ (show 72) | 
 
  
          
                  | Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Artin slope content $/ \Q_p$ | Swan slope content $/ \Q_p$ | Hidden Artin slopes $/ \Q_p$ | Hidden Swan slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Resid. Poly | Jump Set | 
      
      
              | 2.2.8.42a1.2 | $( x^{2} + x + 1 )^{8} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.6 | $( x^{2} + x + 1 )^{8} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.16 | $( x^{2} + x + 1 )^{8} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{3} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.20 | $( x^{2} + x + 1 )^{8} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.42 | $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.46 | $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.56 | $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{3} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ | 
      
              | 2.2.8.42a1.60 | $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{3} + 2$ | $C_4^2:D_4$ (as 16T400) | $128$ | $4$ | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]^{2}$ | $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]^{2}$ | $[3,\frac{7}{2},\frac{7}{2}]$ | $[2,\frac{5}{2},\frac{5}{2}]$ | $[14, 6, 6, 0]$ | $[1, 1]$ | $z^6 + 1,z + 1$ | $[1, 3, 11, 19]$ |