These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.38h1.161 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.162 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.163 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.164 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.165 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.166 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.167 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.168 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x^{3} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.169 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1057) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.170 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 8 x + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1057) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.171 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.172 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.173 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.174 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.175 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.176 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.177 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.178 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x^{3} + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1046) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.179 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1057) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.180 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 8 x + 2$ |
$(C_2^3\times C_4):S_4$ (as 16T1057) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.181 |
$x^{16} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.182 |
$x^{16} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.183 |
$x^{16} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.184 |
$x^{16} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.185 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:S_4$ (as 16T1044) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.186 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^5:S_4$ (as 16T1044) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.187 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.188 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.189 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.190 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x^{3} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.191 |
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.192 |
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.193 |
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.194 |
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.195 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:S_4$ (as 16T1044) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.196 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^5:S_4$ (as 16T1044) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.197 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.198 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.199 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.200 |
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x^{3} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.201 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.202 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 10 x^{4} + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.203 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.204 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 10 x^{4} + 8 x^{3} + 2$ |
$C_2^5:S_4$ (as 16T1045) |
$768$ |
$4$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.205 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1044) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.206 |
$x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 8 x + 2$ |
$C_2^5:S_4$ (as 16T1044) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]_{3}^{2}$ |
$[3,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ |
$[2,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.207 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.208 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 10 x^{4} + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.209 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |
2.1.16.38h1.210 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{10} + 4 x^{9} + 4 x^{7} + 10 x^{4} + 8 x + 2$ |
$C_2^5:\GL(2,3)$ (as 16T1316) |
$1536$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[23, 10, 4, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 5, 21, 37]$ |