Defining polynomial
\(x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $38$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{4}{3}, \frac{4}{3}, 2, \frac{13}{4}]$ |
Visible Swan slopes: | $[\frac{1}{3},\frac{1}{3},1,\frac{9}{4}]$ |
Means: | $\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}, \frac{23}{16}\rangle$ |
Rams: | $(\frac{1}{3}, \frac{1}{3}, 3, 13)$ |
Jump set: | $[1, 2, 5, 21, 37]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, 2.1.4.4a1.1, 2.1.8.12b1.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 2 x^{14} + 2 x^{10} + 4 x^{7} + 10 x^{4} + 8 x + 2 \)
|
Ramification polygon
Residual polynomials: | $z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$ |
Indices of inseparability: | $[23, 10, 4, 4, 0]$ |
Invariants of the Galois closure
Galois degree: | $1536$ |
Galois group: | $C_2^5:\GL(2,3)$ (as 16T1316) |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |