Properties

Label 2.1.16.38h1.186
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(38\)
Galois group $C_2^5:S_4$ (as 16T1044)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $38$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, 2, \frac{13}{4}]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},1,\frac{9}{4}]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}, \frac{23}{16}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 3, 13)$
Jump set:$[1, 2, 5, 21, 37]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.4a1.1, 2.1.8.12b1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 2 x^{4} + 8 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[23, 10, 4, 4, 0]$

Invariants of the Galois closure

Galois degree: $768$
Galois group: $C_2^5:S_4$ (as 16T1044)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, \frac{13}{4}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},\frac{9}{4}]$
Galois mean slope: $3.0989583333333335$
Galois splitting model:not computed