These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.56k1.50 |
$x^{16} + 8 x^{13} + 8 x^{9} + 8 x^{8} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.51 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{9} + 8 x^{8} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.59 |
$x^{16} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 8 x^{8} + 8 x^{6} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.60 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 8 x^{8} + 8 x^{6} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.61 |
$x^{16} + 8 x^{9} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.62 |
$x^{16} + 8 x^{15} + 8 x^{9} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.77 |
$x^{16} + 8 x^{11} + 8 x^{9} + 8 x^{6} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k1.78 |
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 8 x^{6} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[41, 34, 32, 16, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k2.121 |
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 4 x^{8} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2\wr C_6$ (as 16T719) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2]^{3}$ |
$[1,1,1]^{3}$ |
$[41, 34, 28, 16, 0]$ |
$[1, 3, 1]$ |
$z^8 + 1,z^6 + z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k2.122 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 4 x^{8} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2\wr C_6$ (as 16T719) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2]^{3}$ |
$[1,1,1]^{3}$ |
$[41, 34, 28, 16, 0]$ |
$[1, 3, 1]$ |
$z^8 + 1,z^6 + z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k2.125 |
$x^{16} + 4 x^{12} + 8 x^{9} + 4 x^{8} + 8 x^{6} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2\wr C_6$ (as 16T719) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2]^{3}$ |
$[1,1,1]^{3}$ |
$[41, 34, 28, 16, 0]$ |
$[1, 3, 1]$ |
$z^8 + 1,z^6 + z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.56k2.126 |
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 4 x^{8} + 8 x^{6} + 8 x^{4} + 8 x^{2} + 10$ |
$C_2\wr C_6$ (as 16T719) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,2]^{3}$ |
$[1,1,1]^{3}$ |
$[41, 34, 28, 16, 0]$ |
$[1, 3, 1]$ |
$z^8 + 1,z^6 + z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |