\(x^{16} + 8 x^{15} + 8 x^{9} + 8 x^{4} + 8 x^{2} + 10\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $56$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$:
|
$C_2^2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[3, \frac{7}{2}, \frac{7}{2}, 4]$ |
Visible Swan slopes: | $[2,\frac{5}{2},\frac{5}{2},3]$ |
Means: | $\langle1, \frac{7}{4}, \frac{17}{8}, \frac{41}{16}\rangle$ |
Rams: | $(2, 3, 3, 7)$ |
Jump set: | $[1, 3, 7, 15, 31]$ |
Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$128$
|
Galois group: |
$C_2^4:D_4$ (as 16T392)
|
Inertia group: |
$C_2^4:C_4$ (as 16T79)
|
Wild inertia group: |
$C_2^4:C_4$
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]$
|
Galois mean slope: |
$3.59375$
|
Galois splitting model: |
$x^{16} - 8 x^{14} - 168 x^{12} + 352 x^{10} + 4612 x^{8} - 10512 x^{6} - 5808 x^{4} - 1152 x^{2} + 36$
|