Properties

Label 2.1.16.56k1.62
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(56\)
Galois group $C_2^4:D_4$ (as 16T392)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 8 x^{9} + 8 x^{4} + 8 x^{2} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $56$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, \frac{7}{2}, 4]$
Visible Swan slopes:$[2,\frac{5}{2},\frac{5}{2},3]$
Means:$\langle1, \frac{7}{4}, \frac{17}{8}, \frac{41}{16}\rangle$
Rams:$(2, 3, 3, 7)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.10a1.8, 2.1.4.11a1.5, 2.1.4.11a1.8, 2.1.8.24b1.7, 2.1.8.26c1.38, 2.1.8.26c1.40

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 8 x^{9} + 8 x^{4} + 8 x^{2} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^6 + 1$,$z + 1$
Associated inertia:$1$,$2$,$1$
Indices of inseparability:$[41, 34, 32, 16, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^4:D_4$ (as 16T392)
Inertia group: $C_2^4:C_4$ (as 16T79)
Wild inertia group: $C_2^4:C_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},3]$
Galois mean slope: $3.59375$
Galois splitting model: $x^{16} - 8 x^{14} - 168 x^{12} + 352 x^{10} + 4612 x^{8} - 10512 x^{6} - 5808 x^{4} - 1152 x^{2} + 36$ Copy content Toggle raw display