Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $392$ | |
| Group : | $C_2^4.C_2^3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,14,2,13)(3,11,4,12)(5,9,6,10)(7,15,8,16), (1,4,6,15)(2,3,5,16)(9,13)(10,14), (1,10)(2,9)(3,11)(4,12)(5,13)(6,14)(7,16)(8,15) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 12, $C_2^3$ 16: $D_4\times C_2$ x 6, $Q_8:C_2$ 32: $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 32T320 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
16T350 x 4, 16T364 x 4, 16T373 x 8, 16T392 x 15, 32T801 x 8, 32T802 x 4, 32T803 x 2, 32T804, 32T830, 32T831 x 4, 32T832 x 8, 32T845 x 4, 32T846 x 2, 32T878 x 4, 32T879 x 4, 32T1554, 32T1709 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 7,10)( 8, 9)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3,16)( 4,15)( 7, 8)( 9,14)(10,13)(11,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3,16)( 4,15)( 7, 9,11,13)( 8,10,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12)( 8,11)( 9,14)(10,13)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3,15)( 4,16)( 5, 6)( 7,10,11,14)( 8, 9,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,10)( 8, 9)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 6,16)( 2, 4, 5,15)( 7, 9,11,13)( 8,10,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7, 9)( 8,10)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,12, 6,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 4, 9)( 2, 8, 3,10)( 5,12,16,14)( 6,11,15,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 5,12)( 2, 8, 6,11)( 3,10,15,13)( 4, 9,16,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7,15,13)( 2, 8,16,14)( 3,10, 5,12)( 4, 9, 6,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 9,15)(10,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 3,14)( 2, 8, 4,13)( 5,12,15, 9)( 6,11,16,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 6,11)( 2, 8, 5,12)( 3,14,16,10)( 4,13,15, 9)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7,16,10)( 2, 8,15, 9)( 3,14, 6,11)( 4,13, 5,12)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 753] |
| Character table: Data not available. |