\(x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 4 x^{8} + 8 x^{6} + 8 x^{4} + 8 x^{2} + 10\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $56$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[3, \frac{7}{2}, \frac{7}{2}, 4]$ |
| Visible Swan slopes: | $[2,\frac{5}{2},\frac{5}{2},3]$ |
| Means: | $\langle1, \frac{7}{4}, \frac{17}{8}, \frac{41}{16}\rangle$ |
| Rams: | $(2, 3, 3, 7)$ |
| Jump set: | $[1, 3, 7, 15, 31]$ |
| Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$384$
|
| Galois group: |
$C_2\wr C_6$ (as 16T719)
|
| Inertia group: |
$C_2^3\wr C_2$ (as 16T325)
|
| Wild inertia group: |
$C_2^3\wr C_2$
|
| Galois unramified degree: |
$3$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
| Galois Swan slopes: |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]$
|
| Galois mean slope: |
$3.609375$
|
| Galois splitting model: |
$x^{16} - 24 x^{14} + 276 x^{12} - 1560 x^{10} + 4086 x^{8} - 10152 x^{6} + 32052 x^{4} - 6696 x^{2} + 81$
|