\(x^{16} + 8 x^{9} + 8 x^{4} + 8 x^{2} + 10\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $56$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2^2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[3, \frac{7}{2}, \frac{7}{2}, 4]$ |
| Visible Swan slopes: | $[2,\frac{5}{2},\frac{5}{2},3]$ |
| Means: | $\langle1, \frac{7}{4}, \frac{17}{8}, \frac{41}{16}\rangle$ |
| Rams: | $(2, 3, 3, 7)$ |
| Jump set: | $[1, 3, 7, 15, 31]$ |
| Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$128$
|
| Galois group: |
$C_2^4:D_4$ (as 16T392)
|
| Inertia group: |
$C_2^4:C_4$ (as 16T79)
|
| Wild inertia group: |
$C_2^4:C_4$
|
| Galois unramified degree: |
$2$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
| Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]$
|
| Galois mean slope: |
$3.59375$
|
| Galois splitting model: |
$x^{16} + 8 x^{14} - 8 x^{13} - 4 x^{12} + 144 x^{11} - 136 x^{10} - 576 x^{9} + 2818 x^{8} - 3360 x^{7} + 2200 x^{6} + 920 x^{5} + 780 x^{4} - 1600 x^{3} + 5200 x^{2} - 4000 x + 4075$
|