These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.8.31a1.207 |
$x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.208 |
$x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.209 |
$x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.210 |
$x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.215 |
$x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 18$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.216 |
$x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 18$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.217 |
$x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 18$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.31a1.218 |
$x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 18$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |