Defining polynomial
$x^{4} + \left(b_{23} \pi^{6} + b_{19} \pi^{5}\right) x^{3} + \left(b_{14} \pi^{4} + b_{10} \pi^{3}\right) x^{2} + \left(b_{21} \pi^{6} + b_{17} \pi^{5}\right) x + c_{24} \pi^{7} + c_{16} \pi^{5} + \pi$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $4$ |
Base field: | $\Q_{2}(\sqrt{2})$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $19$ |
Absolute Artin slopes: | $[3,4,5]$ |
Swan slopes: | $[4,6]$ |
Means: | $\langle2,4\rangle$ |
Rams: | $(4,8)$ |
Field count: | $76$ (complete) |
Ambiguity: | $4$ |
Mass: | $64$ |
Absolute Mass: | $32$ |
Diagrams
Varying
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $C_8$ (show 8), $D_{8}$ (show 4), $C_8:C_2$ (show 12), $QD_{16}$ (show 4), $(C_8:C_2):C_2$ (show 8), $(C_4^2 : C_2):C_2$ (show 8), $((C_8 : C_2):C_2):C_2$ (show 16), $(((C_4 \times C_2): C_2):C_2):C_2$ (show 16) |
Hidden Artin slopes: | $[\ ]$ (show 8), $[\ ]^{2}$ (show 4), $[2]$ (show 16), $[2,\frac{7}{2}]$ (show 8), $[2,\frac{7}{2},\frac{17}{4}]$ (show 32), $[2,\frac{7}{2}]^{2}$ (show 8) |
Indices of inseparability: | $[24,16,8,0]$ |
Associated inertia: | $[1,1,1]$ |
Jump Set: | $[1,3,7,15]$ |
Fields
Showing all 4
Download displayed columns for resultsLabel | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
---|---|---|---|---|---|---|---|---|
2.1.8.31a1.149 | $x^{8} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 2$ | $C_8:C_2$ (as 8T7) | $16$ | $4$ | $[\ ]^{2}$ | $[24, 16, 8, 0]$ | $[1, 1, 1]$ | $[1, 3, 7, 15]$ |
2.1.8.31a1.150 | $x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 2$ | $C_8:C_2$ (as 8T7) | $16$ | $4$ | $[\ ]^{2}$ | $[24, 16, 8, 0]$ | $[1, 1, 1]$ | $[1, 3, 7, 15]$ |
2.1.8.31a1.159 | $x^{8} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 18$ | $C_8:C_2$ (as 8T7) | $16$ | $4$ | $[\ ]^{2}$ | $[24, 16, 8, 0]$ | $[1, 1, 1]$ | $[1, 3, 7, 15]$ |
2.1.8.31a1.160 | $x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 18$ | $C_8:C_2$ (as 8T7) | $16$ | $4$ | $[\ ]^{2}$ | $[24, 16, 8, 0]$ | $[1, 1, 1]$ | $[1, 3, 7, 15]$ |