Properties

Label 2.1.8.31a1.208
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(31\)
Galois group $(C_4^2 : C_2):C_2$ (as 8T26)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $31$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, 5]$
Visible Swan slopes:$[2,3,4]$
Means:$\langle1, 2, 3\rangle$
Rams:$(2, 4, 8)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.1.4.11a1.13

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[24, 16, 8, 0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $D_4:D_4$ (as 8T26)
Inertia group: $C_4\wr C_2$ (as 8T17)
Wild inertia group: $C_4\wr C_2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}, 4, 5]$
Galois Swan slopes: $[1,2,\frac{5}{2},3,4]$
Galois mean slope: $4.1875$
Galois splitting model:$x^{8} + 8 x^{6} + 24 x^{4} + 32 x^{2} - 2$