$x^{4} + \left(b_{23} \pi^{6} + b_{19} \pi^{5}\right) x^{3} + \left(b_{14} \pi^{4} + b_{10} \pi^{3}\right) x^{2} + \left(b_{21} \pi^{6} + b_{17} \pi^{5}\right) x + c_{24} \pi^{7} + c_{16} \pi^{5} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $D_{8}$ (show 2), $QD_{16}$ (show 6), $Z_8 : Z_8^\times$ (show 8), $C_4\wr C_2$ (show 16), $(C_4^2 : C_2):C_2$ (show 8), $C_2 \wr C_2\wr C_2$ (show 32) |
Hidden Artin slopes: | $[2]$ (show 4), $[2]^{2}$ (show 8), $[2,\frac{7}{2}]$ (show 16), $[2,\frac{7}{2},\frac{17}{4}]^{2}$ (show 32), $[\ ]^{2}$ (show 4), $[2,\frac{7}{2}]^{2}$ (show 8) |
Indices of inseparability: | $[24,16,8,0]$ |
Associated inertia: | $[1,1,1]$ |
Jump Set: | $[1,3,7,15]$ |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.8.31a1.75 |
$x^{8} + 16 x^{5} + 10$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.31a1.86 |
$x^{8} + 16 x^{5} + 26$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.31a1.101 |
$x^{8} + 8 x^{6} + 16 x^{3} + 10$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.31a1.110 |
$x^{8} + 8 x^{6} + 16 x^{3} + 26$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.31a1.121 |
$x^{8} + 8 x^{2} + 16 x + 10$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[3, 4, 5]^{2}$ |
$[2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.31a1.122 |
$x^{8} + 16 x^{7} + 8 x^{2} + 16 x + 10$ |
$QD_{16}$ (as 8T8) |
$16$ |
$2$ |
$[3, 4, 5]^{2}$ |
$[2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
Download
displayed columns for
results