Defining polynomial
|
\(x^{8} + 16 x^{7} + 8 x^{2} + 16 x + 10\)
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $8$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $31$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-2})$ |
| Root number: | $-i$ |
| $\Aut(K/\Q_{2})$: | $C_2$ |
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[3, 4, 5]$ |
| Visible Swan slopes: | $[2,3,4]$ |
| Means: | $\langle1, 2, 3\rangle$ |
| Rams: | $(2, 4, 8)$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $2$ |
Intermediate fields
| $\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.11a1.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: |
\( x^{8} + 16 x^{7} + 8 x^{2} + 16 x + 10 \)
|
Ramification polygon
| Residual polynomials: | $z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$ |
| Indices of inseparability: | $[24, 16, 8, 0]$ |
Invariants of the Galois closure
| Galois degree: | $16$ |
| Galois group: | $\SD_{16}$ (as 8T8) |
| Inertia group: | $C_8$ (as 8T1) |
| Wild inertia group: | $C_8$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[3, 4, 5]$ |
| Galois Swan slopes: | $[2,3,4]$ |
| Galois mean slope: | $3.875$ |
| Galois splitting model: | $x^{8} - 72 x^{4} - 288 x^{2} - 72$ |