Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible slopes |
Slope content |
Ind. of Insep. |
Assoc. Inertia |
3.12.0.1 |
$12$ |
x12 + x6 + x5 + x4 + x2 + 2 |
$3$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$12$ |
$1$ |
$[\ ]$ |
$[\ ]^{12}$ |
$[0]$ |
$[]$ |
3.12.6.1 |
$12$ |
x12 + 18x8 + 81x4 - 486x2 + 1458 |
$3$ |
$2$ |
$6$ |
$6$ |
$C_{12}$ (as 12T1) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$[0]$ |
$[1]$ |
3.12.6.2 |
$12$ |
x12 + 22x10 + 177x8 + 4x7 + 644x6 - 100x5 + 876x4 - 224x3 + 1076x2 + 344x + 112 |
$3$ |
$2$ |
$6$ |
$6$ |
$C_6\times C_2$ (as 12T2) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$[0]$ |
$[1]$ |
3.12.9.1 |
$12$ |
x12 + 18x4 - 27 |
$3$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$6$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{6}$ |
$[0]$ |
$[2]$ |
3.12.9.2 |
$12$ |
x12 + 8x10 + 4x9 + 33x8 + 24x7 - 10x6 - 96x5 + 163x4 + 12x3 - 6x2 + 68x + 172 |
$3$ |
$4$ |
$3$ |
$9$ |
$D_4 \times C_3$ (as 12T14) |
$6$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{6}$ |
$[0]$ |
$[2]$ |
3.12.12.1 |
$12$ |
x12 - 36x10 + 12x9 + 540x8 - 324x7 - 3402x6 + 3240x5 + 8424x4 - 10260x3 + 4860x2 - 972x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.10 |
$12$ |
x12 - 24x11 + 306x10 - 2004x9 + 7236x8 - 4374x7 - 1458x6 + 5832x5 - 1836x3 + 324x2 + 486x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.11 |
$12$ |
x12 - 48x11 + 846x10 - 5820x9 + 38376x8 + 37098x7 - 36666x6 - 17928x5 + 11340x4 - 1188x3 + 486x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^3:(C_4\times S_3)$ (as 12T170) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.12 |
$12$ |
x12 - 12x11 + 156x10 - 1104x9 + 3420x8 + 972x7 - 1890x6 + 1404x5 + 1944x4 + 432x3 + 324x2 + 324x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_2\times C_3^2:C_4$ (as 12T41) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.13 |
$12$ |
x12 - 36x11 + 324x10 + 588x9 + 9414x8 + 56376x7 + 114642x6 + 92448x5 + 23409x4 + 2376x3 + 3078x2 - 972x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.14 |
$12$ |
x12 + 54x10 - 240x9 - 1935x8 + 7236x7 + 45198x6 + 60156x5 + 16686x4 - 13824x3 + 5184x2 - 972x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.15 |
$12$ |
x12 - 18x11 + 186x10 - 798x9 + 2817x8 + 30456x7 + 55404x6 + 28404x5 - 2511x4 + 918x3 + 2754x2 - 810x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.16 |
$12$ |
x12 - 18x11 + 30x10 + 1020x9 + 3249x8 + 6480x7 + 21924x6 + 35208x5 + 7452x4 - 8478x3 + 5670x2 - 1134x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^3:(C_4\times S_3)$ (as 12T170) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.17 |
$12$ |
x12 + 36x11 + 540x10 + 3900x9 + 8028x8 - 44388x7 + 21870x6 + 7020x5 + 20412x4 - 8316x3 + 4212x2 - 972x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^3:(C_4\times S_3)$ (as 12T170) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.18 |
$12$ |
x12 - 36x11 + 438x10 + 120x9 - 4563x8 + 1188x7 + 22410x6 + 10692x5 - 17658x4 - 3780x3 + 6804x2 - 1296x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$F_9$ (as 12T46) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.19 |
$12$ |
x12 - 12x11 + 78x10 - 564x9 + 5913x8 - 7182x6 + 972x5 + 7614x4 + 3024x3 + 1620x2 + 648x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:C_4\times S_3$ (as 12T119) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.2 |
$12$ |
x12 - 48x11 + 606x10 + 2856x9 + 29529x8 + 112428x7 + 183222x6 + 125172x5 + 19926x4 + 3024x3 + 9072x2 - 1620x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.20 |
$12$ |
x12 + 30x10 + 228x9 + 1872x8 + 5778x7 + 15336x6 + 18036x5 + 12879x4 + 7074x3 + 3240x2 + 810x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.21 |
$12$ |
x12 - 6x11 + 60x10 - 114x9 + 2286x8 + 33750x7 + 101790x6 + 91152x5 + 24867x4 + 6102x3 + 5832x2 - 1296x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:F_9$ (as 12T173) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.22 |
$12$ |
x12 + 36x11 + 426x10 + 2172x9 + 14769x8 + 20628x7 + 31050x6 + 11016x5 + 7938x4 + 3672x3 + 972x2 + 324x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:C_4\times S_3$ (as 12T119) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.23 |
$12$ |
x12 + 6x11 + 12x10 + 12x9 + 189x8 + 108x7 + 324x6 + 648x5 + 891x4 + 918x3 + 648x2 + 324x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$S_3 \times C_4$ (as 12T11) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.24 |
$12$ |
x12 - 12x7 - 6x6 + 72x2 + 72x + 18 |
$3$ |
$6$ |
$2$ |
$12$ |
$C_3^4:\OD_{16}$ (as 12T215) |
$4$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4, 5/4]_{4}^{4}$ |
$[1, 0]$ |
$[1, 1]$ |
3.12.12.25 |
$12$ |
x12 - 6x7 - 6x6 + 9x4 + 36x3 + 63x2 + 54x + 18 |
$3$ |
$6$ |
$2$ |
$12$ |
$C_3^4:\OD_{16}$ (as 12T215) |
$4$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4, 5/4]_{4}^{4}$ |
$[1, 0]$ |
$[1, 1]$ |
3.12.12.26 |
$12$ |
x12 - 12x8 + 6x7 + 6x6 + 72x4 - 36x3 - 27x2 + 18x + 9 |
$3$ |
$6$ |
$2$ |
$12$ |
$\SOPlus(4,2)$ (as 12T34) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[1, 0]$ |
$[1, 1]$ |
3.12.12.27 |
$12$ |
x12 - 12x7 + 6x6 + 9x4 + 36x3 + 72x2 - 36x + 9 |
$3$ |
$6$ |
$2$ |
$12$ |
$\PSU(3,2)$ (as 12T47) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[1, 0]$ |
$[1, 1]$ |
3.12.12.28 |
$12$ |
x12 + 6x6 + 36x4 + 36x3 + 9x2 + 9 |
$3$ |
$6$ |
$2$ |
$12$ |
$\SOPlus(4,2)$ (as 12T34) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[1, 0]$ |
$[1, 1]$ |
3.12.12.29 |
$12$ |
x12 + 3x + 3 |
$3$ |
$12$ |
$1$ |
$12$ |
$F_9:C_2$ (as 12T84) |
$2$ |
$8$ |
$[9/8]$ |
$[9/8, 9/8]_{8}^{2}$ |
$[1, 0]$ |
$[1, 2]$ |
3.12.12.3 |
$12$ |
x12 + 6x11 + 60x10 + 210x9 + 1170x8 + 2322x7 + 1782x6 + 6048x5 + 13527x4 + 8370x3 + 2916x2 + 648x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^3:(C_4\times S_3)$ (as 12T170) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.30 |
$12$ |
x12 + 3x2 + 3x + 6 |
$3$ |
$12$ |
$1$ |
$12$ |
$F_9:C_2$ (as 12T84) |
$2$ |
$8$ |
$[9/8]$ |
$[9/8, 9/8]_{8}^{2}$ |
$[1, 0]$ |
$[1, 2]$ |
3.12.12.4 |
$12$ |
x12 - 24x11 + 192x10 + 1236x9 + 2160x8 + 7560x7 + 29430x6 + 30456x5 + 6804x4 - 540x3 + 1296x2 - 648x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$F_9$ (as 12T46) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.5 |
$12$ |
x12 - 12x11 + 132x10 - 204x9 + 3024x8 - 432x7 + 3510x6 + 2268x5 - 972x4 + 756x3 + 1620x2 + 648x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$S_3 \times C_4$ (as 12T11) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.6 |
$12$ |
x12 - 24x11 + 270x10 - 924x9 + 1557x8 + 9828x7 + 8694x6 + 1080x5 + 1134x4 + 1404x3 + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_6.D_6$ (as 12T39) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.7 |
$12$ |
x12 + 6x11 + 24x10 + 48x9 + 576x8 + 5508x7 + 19710x6 + 29538x5 + 13608x4 - 3456x3 + 1458x2 - 324x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:C_4\times S_3$ (as 12T119) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.8 |
$12$ |
x12 + 42x11 + 732x10 + 6888x9 + 37836x8 + 101736x7 + 148230x6 + 129006x5 + 72900x4 + 28944x3 + 8262x2 + 1296x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_3^2:C_4\times S_3$ (as 12T119) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.12.9 |
$12$ |
x12 + 6x11 - 12x10 - 60x9 + 261x8 + 540x7 + 540x6 + 1728x5 + 2187x4 - 1674x3 + 1296x2 - 324x + 81 |
$3$ |
$3$ |
$4$ |
$12$ |
$C_2\times C_3^2:C_4$ (as 12T41) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{4}$ |
$[1, 0]$ |
$[1]$ |
3.12.13.1 |
$12$ |
x12 + 3x2 + 3 |
$3$ |
$12$ |
$1$ |
$13$ |
$\SOPlus(4,2)$ (as 12T36) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[2, 0]$ |
$[2, 2]$ |
3.12.13.2 |
$12$ |
x12 + 3x3 + 6x2 + 3 |
$3$ |
$12$ |
$1$ |
$13$ |
$S_3^2:C_6$ (as 12T121) |
$6$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{6}$ |
$[2, 0]$ |
$[1, 2]$ |
3.12.13.3 |
$12$ |
x12 + 3x3 + 3x2 + 6 |
$3$ |
$12$ |
$1$ |
$13$ |
$S_3^2:C_6$ (as 12T121) |
$6$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{6}$ |
$[2, 0]$ |
$[1, 2]$ |
3.12.13.4 |
$12$ |
x12 + 6x2 + 6 |
$3$ |
$12$ |
$1$ |
$13$ |
$\SOPlus(4,2)$ (as 12T36) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[2, 0]$ |
$[2, 2]$ |
3.12.13.5 |
$12$ |
x12 + 6x2 + 3 |
$3$ |
$12$ |
$1$ |
$13$ |
$\SOPlus(4,2)$ (as 12T35) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[2, 0]$ |
$[1, 2]$ |
3.12.13.6 |
$12$ |
x12 + 3x2 + 6 |
$3$ |
$12$ |
$1$ |
$13$ |
$\SOPlus(4,2)$ (as 12T35) |
$2$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{2}$ |
$[2, 0]$ |
$[1, 2]$ |
3.12.14.1 |
$12$ |
x12 - 6x8 - 6x6 + 18x4 + 36x2 + 18 |
$3$ |
$6$ |
$2$ |
$14$ |
$(C_3\times C_3):C_4$ (as 12T17) |
$2$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{2}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.10 |
$12$ |
x12 - 6x9 + 12x8 + 51x6 - 36x5 + 36x4 - 18x3 + 36x2 + 9 |
$3$ |
$6$ |
$2$ |
$14$ |
$C_6\times S_3$ (as 12T18) |
$6$ |
$2$ |
$[3/2]$ |
$[3/2]_{2}^{6}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.11 |
$12$ |
x12 + 12x11 + 72x10 + 280x9 + 792x8 + 1728x7 + 2918x6 + 3684x5 + 3156x4 + 1376x3 - 36x2 - 168x + 25 |
$3$ |
$6$ |
$2$ |
$14$ |
$D_6$ (as 12T3) |
$2$ |
$2$ |
$[3/2]$ |
$[3/2]_{2}^{2}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.12 |
$12$ |
x12 + 12x8 - 6x6 + 36x4 - 36x2 + 18 |
$3$ |
$6$ |
$2$ |
$14$ |
$C_6.D_6$ (as 12T39) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{4}$ |
$[2, 0]$ |
$[2, 1]$ |
3.12.14.13 |
$12$ |
x12 + 12x9 - 6x8 + 30x6 - 36x5 + 45x4 - 36x3 + 54x2 + 18 |
$3$ |
$6$ |
$2$ |
$14$ |
$C_3^2:C_{12}$ (as 12T73) |
$6$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{6}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.14 |
$12$ |
x12 - 6x8 - 6x6 + 45x4 + 54x2 + 18 |
$3$ |
$6$ |
$2$ |
$14$ |
$(C_3\times C_3):C_4$ (as 12T17) |
$2$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{2}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.15 |
$12$ |
x12 - 6x9 + 6x8 + 24x6 - 18x5 + 9x4 - 18x3 + 18x2 + 9 |
$3$ |
$6$ |
$2$ |
$14$ |
$C_6\times S_3$ (as 12T18) |
$6$ |
$2$ |
$[3/2]$ |
$[3/2]_{2}^{6}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.2 |
$12$ |
x12 - 6x9 + 6x8 + 39x6 + 18x5 + 18x4 + 54x3 + 18 |
$3$ |
$6$ |
$2$ |
$14$ |
$C_3^2:C_{12}$ (as 12T73) |
$6$ |
$2$ |
$[3/2]$ |
$[3/2, 3/2]_{2}^{6}$ |
$[2, 0]$ |
$[1, 1]$ |
3.12.14.3 |
$12$ |
x12 + 30x6 + 72x5 + 36x4 + 36x3 + 36x2 + 18 |
$3$ |
$6$ |
$2$ |
$14$ |
$S_3 \times C_4$ (as 12T11) |
$4$ |
$2$ |
$[3/2]$ |
$[3/2]_{2}^{4}$ |
$[2, 0]$ |
$[2, 1]$ |