Properties

Label 3.12.9.2
Base \(\Q_{3}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 8 x^{10} + 4 x^{9} + 33 x^{8} + 24 x^{7} - 10 x^{6} - 96 x^{5} + 163 x^{4} + 12 x^{3} - 6 x^{2} + 68 x + 172\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $6$
This field is not Galois over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.3.0.1, 3.4.3.1, 3.6.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + z^{2} + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3\times D_4$ (as 12T14)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$6$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{12} - 3 x^{11} + 2 x^{10} + 2 x^{9} - 3 x^{7} - x^{6} - 6 x^{5} + 28 x^{4} - 33 x^{3} + 18 x^{2} - 5 x + 1$