Properties

Label 3.12.12.10
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(12\)
Galois group $C_3^2:F_9$ (as 12T173)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 24 x^{11} + 306 x^{10} - 2004 x^{9} + 7236 x^{8} - 4374 x^{7} - 1458 x^{6} + 5832 x^{5} - 1836 x^{3} + 324 x^{2} + 486 x + 81\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} + 2 x^{3} + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{3} + 6 t^{2}\right) x^{2} + \left(3 t + 6\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2t + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_3^2:F_9$ (as 12T173)
Inertia group:Intransitive group isomorphic to $C_3^3:S_3$
Wild inertia group:$C_3^4$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2]$
Galois mean slope:$241/162$
Galois splitting model: $x^{12} - 12 x^{10} - 8 x^{9} + 54 x^{8} + 72 x^{7} - 101 x^{6} - 216 x^{5} + 39 x^{4} + 286 x^{3} + 63 x^{2} - 210 x - 137$ Copy content Toggle raw display