Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.5.8.110d |
$2$ |
$40$ |
$1$ |
$40$ |
$5$ |
$1$ |
$5$ |
$8$ |
$1$ |
$8$ |
$110$ |
$0$ |
$110$ |
$\Q_{2}$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 2, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ |
$(1, 3, 5)$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 4 c_{8} + 8 c_{16} + 2$ |
$40$ |
$0$ |
$976191488$ |
$976191488/5$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.2a1.1-5.4.70b |
$2$ |
$20$ |
$2$ |
$40$ |
$5$ |
$1$ |
$5$ |
$4$ |
$2$ |
$8$ |
$70$ |
$2$ |
$75$ |
$\Q_{2}(\sqrt{-1})$ |
$[2, 3, \frac{7}{2}]$ |
$[3, 4]$ |
$\langle\frac{3}{2}, \frac{11}{4}\rangle$ |
$(3, 5)$ |
$x^4 + (b_{15} \pi^4 + a_{11} \pi^3) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + b_{13} \pi^4 x + c_{16} \pi^5 + c_{12} \pi^4 + \pi$ |
$20$ |
$0$ |
$31490048$ |
$15745024/5$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.2a1.2-5.4.70b |
$2$ |
$20$ |
$2$ |
$40$ |
$5$ |
$1$ |
$5$ |
$4$ |
$2$ |
$8$ |
$70$ |
$2$ |
$75$ |
$\Q_{2}(\sqrt{-5})$ |
$[2, 3, \frac{7}{2}]$ |
$[3, 4]$ |
$\langle\frac{3}{2}, \frac{11}{4}\rangle$ |
$(3, 5)$ |
$x^4 + (b_{15} \pi^4 + a_{11} \pi^3) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + b_{13} \pi^4 x + c_{16} \pi^5 + c_{12} \pi^4 + \pi$ |
$20$ |
$0$ |
$31490048$ |
$15745024/5$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.1-5.4.50b |
$2$ |
$20$ |
$2$ |
$40$ |
$5$ |
$1$ |
$5$ |
$4$ |
$2$ |
$8$ |
$50$ |
$3$ |
$60$ |
$\Q_{2}(\sqrt{-2})$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$20$ |
$0$ |
$984064$ |
$492032/5$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.2-5.4.50b |
$2$ |
$20$ |
$2$ |
$40$ |
$5$ |
$1$ |
$5$ |
$4$ |
$2$ |
$8$ |
$50$ |
$3$ |
$60$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$20$ |
$0$ |
$984064$ |
$492032/5$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.3-5.4.50b |
$2$ |
$20$ |
$2$ |
$40$ |
$5$ |
$1$ |
$5$ |
$4$ |
$2$ |
$8$ |
$50$ |
$3$ |
$60$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$20$ |
$0$ |
$984064$ |
$492032/5$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.4-5.4.50b |
$2$ |
$20$ |
$2$ |
$40$ |
$5$ |
$1$ |
$5$ |
$4$ |
$2$ |
$8$ |
$50$ |
$3$ |
$60$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 3]$ |
$\langle\frac{1}{2}, \frac{7}{4}\rangle$ |
$(1, 5)$ |
$x^4 + (b_{11} \pi^3 + a_{7} \pi^2) x^3 + a_{2} \pi x^2 + b_{9} \pi^3 x + c_{12} \pi^4 + c_{4} \pi^2 + \pi$ |
$20$ |
$0$ |
$984064$ |
$492032/5$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.1-5.2.30a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$30$ |
$8$ |
$55$ |
2.1.4.8b1.1 |
$[2, 3, \frac{7}{2}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$10$ |
$0$ |
$31744$ |
$7936/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.2-5.2.30a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$30$ |
$8$ |
$55$ |
2.1.4.8b1.2 |
$[2, 3, \frac{7}{2}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$10$ |
$0$ |
$31744$ |
$7936/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.3-5.2.30a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$30$ |
$8$ |
$55$ |
2.1.4.8b1.3 |
$[2, 3, \frac{7}{2}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$10$ |
$0$ |
$31744$ |
$15872/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.4-5.2.30a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$30$ |
$8$ |
$55$ |
2.1.4.8b1.4 |
$[2, 3, \frac{7}{2}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$10$ |
$0$ |
$31744$ |
$15872/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.5-5.2.30a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$30$ |
$8$ |
$55$ |
2.1.4.8b1.5 |
$[2, 3, \frac{7}{2}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$10$ |
$0$ |
$31744$ |
$7936/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.8b1.6-5.2.30a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$30$ |
$8$ |
$55$ |
2.1.4.8b1.6 |
$[2, 3, \frac{7}{2}]$ |
$[5]$ |
$\langle\frac{5}{2}\rangle$ |
$(5)$ |
$x^2 + (b_{9} \pi^5 + b_{7} \pi^4 + a_{5} \pi^3) x + c_{10} \pi^6 + \pi$ |
$10$ |
$0$ |
$31744$ |
$7936/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.1-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.1 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.2-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.2 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.3-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.3 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.4-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.4 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.5-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.5 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.6-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.6 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.7-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.7 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.9a1.8-5.2.20a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$20$ |
$9$ |
$50$ |
2.1.4.9a1.8 |
$[2, 3, \frac{7}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$10$ |
$0$ |
$992$ |
$496/5$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.1-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.1 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.2-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.2 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.3-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.3 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.4-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.4 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.5-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.5 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.6-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.6 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.7-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.7 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.10a1.8-5.2.10a |
$2$ |
$10$ |
$4$ |
$40$ |
$5$ |
$1$ |
$5$ |
$2$ |
$4$ |
$8$ |
$10$ |
$10$ |
$45$ |
2.1.4.10a1.8 |
$[2, 3, \frac{7}{2}]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + a_{1} \pi x + c_{2} \pi^2 + \pi$ |
$10$ |
$0$ |
$31$ |
$31/10$ |
$0$ |
$0\%$ |
$1$ |
2.5.1.0a1.1-1.8.22d |
$2$ |
$8$ |
$5$ |
$40$ |
$1$ |
$5$ |
$5$ |
$8$ |
$1$ |
$8$ |
$22$ |
$0$ |
$22$ |
2.5.1.0a1.1 |
$[2, 3, \frac{7}{2}]$ |
$[1, 2, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ |
$(1, 3, 5)$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 4 c_{8} + 8 c_{16} + 2$ |
$8$ |
$0$ |
$976191488$ |
$976191488/5$ |
$0$ |
$0\%$ |
$3$ |
2.1.8.22d1.1-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.1 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.2-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.2 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.3-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.3 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.4-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.4 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.5-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.5 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/10$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.6-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.6 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/10$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.7-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.7 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.8-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.8 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.9-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.9 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/40$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.10-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.10 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/40$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.11-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.11 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.12-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.12 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.13-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.13 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.14-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.14 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/40$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.15-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.15 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/40$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.16-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.16 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.17-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.17 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/40$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.18-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.18 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/40$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.19-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.19 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |
2.1.8.22d1.20-5.1.0a |
$2$ |
$5$ |
$8$ |
$40$ |
$5$ |
$1$ |
$5$ |
$1$ |
$8$ |
$8$ |
$0$ |
$22$ |
$75$ |
2.1.8.22d1.20 |
$[2, 3, \frac{7}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/20$ |
$0$ |
$0\%$ |
$0$ |