Properties

Label 2.1.8.22d1.17
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(22\)
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $D_4$
This field is Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{7}{2}]$
Visible Swan slopes:$[1,2,\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$
Rams:$(1, 3, 5)$
Jump set:$[1, 2, 4, 16]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.1.4.8b1.5, 2.1.4.9a1.8 x2, 2.1.4.10a1.5 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[15, 10, 4, 0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $D_4$ (as 8T4)
Inertia group: $D_4$ (as 8T4)
Wild inertia group: $D_4$
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}]$
Galois Swan slopes: $[1,2,\frac{5}{2}]$
Galois mean slope: $2.75$
Galois splitting model:$x^{8} - 4 x^{7} + 4 x^{6} - 4 x^{5} + 12 x^{4} + 4 x^{3} + 4 x^{2} + 4 x + 1$