Defining polynomial
\(x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 6\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $22$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: | $D_4$ |
This field is Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ |
Rams: | $(1, 3, 5)$ |
Jump set: | $[1, 2, 4, 16]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.1.4.8b1.5, 2.1.4.9a1.8 x2, 2.1.4.10a1.5 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 6 \)
|
Ramification polygon
Residual polynomials: | $z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$ |
Indices of inseparability: | $[15, 10, 4, 0]$ |
Invariants of the Galois closure
Galois degree: | $8$ |
Galois group: | $D_4$ (as 8T4) |
Inertia group: | $D_4$ (as 8T4) |
Wild inertia group: | $D_4$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,2,\frac{5}{2}]$ |
Galois mean slope: | $2.75$ |
Galois splitting model: | $x^{8} - 4 x^{7} + 4 x^{6} - 4 x^{5} + 12 x^{4} + 4 x^{3} + 4 x^{2} + 4 x + 1$ |