Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.4.8.120a |
$2$ |
$32$ |
$1$ |
$32$ |
$4$ |
$1$ |
$4$ |
$8$ |
$1$ |
$8$ |
$120$ |
$0$ |
$120$ |
$\Q_{2}$ |
$[3, 4, \frac{19}{4}]$ |
$[2, 3, \frac{15}{4}]$ |
$\langle1, 2, \frac{23}{8}\rangle$ |
$(2, 4, 7)$ |
$x^8 + 8 a_{23} x^7 + (8 b_{22} + 16 c_{30}) x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$32$ |
$0$ |
$251658240$ |
$62914560$ |
$0$ |
$0\%$ |
$3$ |
2.2.1.0a1.1-2.8.60a |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$2$ |
$4$ |
$8$ |
$1$ |
$8$ |
$60$ |
$0$ |
$60$ |
$\Q_{2}(\sqrt{5})$ |
$[3, 4, \frac{19}{4}]$ |
$[2, 3, \frac{15}{4}]$ |
$\langle1, 2, \frac{23}{8}\rangle$ |
$(2, 4, 7)$ |
$x^8 + 8 a_{23} x^7 + (8 b_{22} + 16 c_{30}) x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$16$ |
$0$ |
$251658240$ |
$62914560$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.1-4.4.72a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$1$ |
$4$ |
$4$ |
$2$ |
$8$ |
$72$ |
$3$ |
$80$ |
$\Q_{2}(\sqrt{-2})$ |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$16$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.2-4.4.72a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$1$ |
$4$ |
$4$ |
$2$ |
$8$ |
$72$ |
$3$ |
$80$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$16$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.3-4.4.72a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$1$ |
$4$ |
$4$ |
$2$ |
$8$ |
$72$ |
$3$ |
$80$ |
$\Q_{2}(\sqrt{2})$ |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$16$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.4-4.4.72a |
$2$ |
$16$ |
$2$ |
$32$ |
$4$ |
$1$ |
$4$ |
$4$ |
$2$ |
$8$ |
$72$ |
$3$ |
$80$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$16$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.4.1.0a1.1-1.8.30a |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$4$ |
$4$ |
$8$ |
$1$ |
$8$ |
$30$ |
$0$ |
$30$ |
2.4.1.0a1.1 |
$[3, 4, \frac{19}{4}]$ |
$[2, 3, \frac{15}{4}]$ |
$\langle1, 2, \frac{23}{8}\rangle$ |
$(2, 4, 7)$ |
$x^8 + 8 a_{23} x^7 + (8 b_{22} + 16 c_{30}) x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$8$ |
$0$ |
$251658240$ |
$62914560$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.6a1.1-2.4.36a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$36$ |
$6$ |
$40$ |
2.2.2.6a1.1 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$8$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.2-2.4.36a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$36$ |
$6$ |
$40$ |
2.2.2.6a1.2 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$8$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.3-2.4.36a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$36$ |
$6$ |
$40$ |
2.2.2.6a1.3 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$8$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.4-2.4.36a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$36$ |
$6$ |
$40$ |
2.2.2.6a1.4 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$8$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.5-2.4.36a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$36$ |
$6$ |
$40$ |
2.2.2.6a1.5 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$8$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.6-2.4.36a |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$2$ |
$4$ |
$4$ |
$2$ |
$8$ |
$36$ |
$6$ |
$40$ |
2.2.2.6a1.6 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$8$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.11a1.1-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.1 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.2-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.2 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.3-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.3 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.4-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.4 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.5-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.5 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.6-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.6 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.7-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.7 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.8-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.8 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.9-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.9 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.10-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.10 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.11-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.11 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.12-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.12 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.13-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.13 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.14-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.14 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.15-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.15 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.16-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.16 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.17-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.17 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.18-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.18 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$3840$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.19-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.19 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.1.4.11a1.20-4.2.32a |
$2$ |
$8$ |
$4$ |
$32$ |
$4$ |
$1$ |
$4$ |
$2$ |
$4$ |
$8$ |
$32$ |
$11$ |
$64$ |
2.1.4.11a1.20 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$8$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.4.2.12a1.1-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.1 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.2-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.2 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.3-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.3 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$7864320$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.4-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.4 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$7864320$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.5-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.5 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$7864320$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.6-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.6 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$7864320$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.7-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.7 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.8-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.8 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.9-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.9 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.10-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.10 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$1966080$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.11-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.11 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$7864320$ |
$0$ |
$0\%$ |
$2$ |
2.4.2.12a1.12-1.4.18a |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$4$ |
$4$ |
$4$ |
$2$ |
$8$ |
$18$ |
$12$ |
$20$ |
2.4.2.12a1.12 |
$[3, 4, \frac{19}{4}]$ |
$[4, \frac{11}{2}]$ |
$\langle2, \frac{15}{4}\rangle$ |
$(4, 7)$ |
$x^4 + (b_{19} \pi^5 + a_{15} \pi^4) x^3 + (c_{22} \pi^6 + b_{14} \pi^4 + b_{10} \pi^3) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{16} \pi^5 + \pi$ |
$4$ |
$0$ |
$15728640$ |
$7864320$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.22a1.1-2.2.16a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$2$ |
$4$ |
$2$ |
$4$ |
$8$ |
$16$ |
$22$ |
$32$ |
2.2.4.22a1.1 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$4$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.22a1.2-2.2.16a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$2$ |
$4$ |
$2$ |
$4$ |
$8$ |
$16$ |
$22$ |
$32$ |
2.2.4.22a1.2 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$4$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.22a1.3-2.2.16a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$2$ |
$4$ |
$2$ |
$4$ |
$8$ |
$16$ |
$22$ |
$32$ |
2.2.4.22a1.3 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$4$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.22a1.4-2.2.16a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$2$ |
$4$ |
$2$ |
$4$ |
$8$ |
$16$ |
$22$ |
$32$ |
2.2.4.22a1.4 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$4$ |
$0$ |
$61440$ |
$7680$ |
$0$ |
$0\%$ |
$1$ |
2.2.4.22a1.5-2.2.16a |
$2$ |
$4$ |
$8$ |
$32$ |
$2$ |
$2$ |
$4$ |
$2$ |
$4$ |
$8$ |
$16$ |
$22$ |
$32$ |
2.2.4.22a1.5 |
$[3, 4, \frac{19}{4}]$ |
$[7]$ |
$\langle\frac{7}{2}\rangle$ |
$(7)$ |
$x^2 + (b_{13} \pi^7 + b_{11} \pi^6 + b_{9} \pi^5 + a_{7} \pi^4) x + c_{14} \pi^8 + \pi$ |
$4$ |
$0$ |
$61440$ |
$15360$ |
$0$ |
$0\%$ |
$1$ |