Properties

Label 2.1.4.11a1.9
Base \(\Q_{2}\)
Degree \(4\)
e \(4\)
f \(1\)
c \(11\)
Galois group $C_4$ (as 4T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{4} + 4 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $4$
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $-1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_4$
This field is Galois and abelian over $\Q_{2}.$
Visible Artin slopes:$[3, 4]$
Visible Swan slopes:$[2,3]$
Means:$\langle1, 2\rangle$
Rams:$(2, 4)$
Jump set:$[1, 3, 7]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{4} + 4 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[8, 4, 0]$

Invariants of the Galois closure

Galois degree: $4$
Galois group: $C_4$ (as 4T1)
Inertia group: $C_4$ (as 4T1)
Wild inertia group: $C_4$
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[3, 4]$
Galois Swan slopes: $[2,3]$
Galois mean slope: $2.75$
Galois splitting model:$x^{4} + 4 x^{2} + 2$