Show commands: Magma
Group invariants
| Abstract group: | $C_4$ |
| |
| Order: | $4=2^{2}$ |
| |
| Cyclic: | yes |
| |
| Abelian: | yes |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $1$ |
|
Group action invariants
| Degree $n$: | $4$ |
| |
| Transitive number $t$: | $1$ |
| |
| CHM label: | $C(4) = 4$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,2,3,4)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{4}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{2}$ | $1$ | $2$ | $2$ | $(1,3)(2,4)$ |
| 4A1 | $4$ | $1$ | $4$ | $3$ | $(1,2,3,4)$ |
| 4A-1 | $4$ | $1$ | $4$ | $3$ | $(1,4,3,2)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 4A1 | 4A-1 | ||
| Size | 1 | 1 | 1 | 1 | |
| 2 P | 1A | 1A | 2A | 2A | |
| Type | |||||
| 4.1.1a | R | ||||
| 4.1.1b | R | ||||
| 4.1.1c1 | C | ||||
| 4.1.1c2 | C |
Indecomposable integral representations
|
Complete
list of indecomposable integral representations:
|
Regular extensions
| $f_{ 1 } =$ |
$x^{4} −2 s \left(1+t^{2}\right)x^{2} +s^{2} t^{2} \left(1+t^{2}\right)$
|
| The polynomial $f_{1}$ is generic for any base field $K$ of characteristic $\neq$ 2 |