Show commands:
Magma
magma: G := TransitiveGroup(4, 1);
Group action invariants
Degree $n$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_4$ | ||
CHM label: | $C(4) = 4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,4) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{4}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2}$ | $1$ | $2$ | $2$ | $(1,3)(2,4)$ |
4A1 | $4$ | $1$ | $4$ | $3$ | $(1,2,3,4)$ |
4A-1 | $4$ | $1$ | $4$ | $3$ | $(1,4,3,2)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $4=2^{2}$ | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $1$ | ||
Label: | 4.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 4A1 | 4A-1 | ||
Size | 1 | 1 | 1 | 1 | |
2 P | 1A | 1A | 2A | 2A | |
Type | |||||
4.1.1a | R | ||||
4.1.1b | R | ||||
4.1.1c1 | C | ||||
4.1.1c2 | C |
magma: CharacterTable(G);
Indecomposable integral representations
Complete
list of indecomposable integral representations:
|