Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.2.16.100l |
$2$ |
$32$ |
$1$ |
$32$ |
$2$ |
$1$ |
$2$ |
$16$ |
$1$ |
$16$ |
$100$ |
$0$ |
$100$ |
$\Q_{2}$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, 2, \frac{11}{4}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{35}{16}\rangle$ |
$(1, 3, 3, 9)$ |
$x^{16} + 4 b_{30} x^{14} + (4 b_{28} + 8 c_{44}) x^{12} + 8 b_{43} x^{11} + 4 a_{26} x^{10} + 8 b_{41} x^9 + 2 a_{8} x^8 + 8 b_{39} x^7 + 8 b_{37} x^5 + 4 b_{20} x^4 + 8 a_{35} x^3 + 4 c_{16} + 8 c_{32} + 2$ |
$32$ |
$0$ |
$442368$ |
$221184$ |
$0$ |
$0\%$ |
$3$ |
2.2.1.0a1.1-1.16.50l |
$2$ |
$16$ |
$2$ |
$32$ |
$1$ |
$2$ |
$2$ |
$16$ |
$1$ |
$16$ |
$50$ |
$0$ |
$50$ |
$\Q_{2}(\sqrt{5})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, 2, \frac{11}{4}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{35}{16}\rangle$ |
$(1, 3, 3, 9)$ |
$x^{16} + 4 b_{30} x^{14} + (4 b_{28} + 8 c_{44}) x^{12} + 8 b_{43} x^{11} + 4 a_{26} x^{10} + 8 b_{41} x^9 + 2 a_{8} x^8 + 8 b_{39} x^7 + 8 b_{37} x^5 + 4 b_{20} x^4 + 8 a_{35} x^3 + 4 c_{16} + 8 c_{32} + 2$ |
$16$ |
$0$ |
$442368$ |
$221184$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.2a1.1-2.8.68c |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$68$ |
$2$ |
$70$ |
$\Q_{2}(\sqrt{-1})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 3, \frac{9}{2}]$ |
$\langle\frac{3}{2}, \frac{9}{4}, \frac{27}{8}\rangle$ |
$(3, 3, 9)$ |
$x^8 + b_{31} \pi^4 x^7 + b_{22} \pi^3 x^6 + b_{29} \pi^4 x^5 + (c_{36} \pi^5 + b_{20} \pi^3 + b_{12} \pi^2) x^4 + (b_{35} \pi^5 + a_{27} \pi^4) x^3 + a_{18} \pi^3 x^2 + b_{33} \pi^5 x + c_{24} \pi^4 + \pi$ |
$16$ |
$0$ |
$147456$ |
$36864$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.2a1.2-2.8.68c |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$68$ |
$2$ |
$70$ |
$\Q_{2}(\sqrt{-5})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 3, \frac{9}{2}]$ |
$\langle\frac{3}{2}, \frac{9}{4}, \frac{27}{8}\rangle$ |
$(3, 3, 9)$ |
$x^8 + b_{31} \pi^4 x^7 + b_{22} \pi^3 x^6 + b_{29} \pi^4 x^5 + (c_{36} \pi^5 + b_{20} \pi^3 + b_{12} \pi^2) x^4 + (b_{35} \pi^5 + a_{27} \pi^4) x^3 + a_{18} \pi^3 x^2 + b_{33} \pi^5 x + c_{24} \pi^4 + \pi$ |
$16$ |
$0$ |
$147456$ |
$36864$ |
$0$ |
$0\%$ |
$2$ |
2.1.2.3a1.1-2.8.52f |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$52$ |
$3$ |
$56$ |
$\Q_{2}(\sqrt{-2})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$16$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.2-2.8.52f |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$52$ |
$3$ |
$56$ |
$\Q_{2}(\sqrt{-2\cdot 5})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$16$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.3-2.8.52f |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$52$ |
$3$ |
$56$ |
$\Q_{2}(\sqrt{2})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$16$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.1.2.3a1.4-2.8.52f |
$2$ |
$16$ |
$2$ |
$32$ |
$2$ |
$1$ |
$2$ |
$8$ |
$2$ |
$16$ |
$52$ |
$3$ |
$56$ |
$\Q_{2}(\sqrt{2\cdot 5})$ |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$16$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.4a1.1-1.8.34c |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$34$ |
$4$ |
$35$ |
2.2.2.4a1.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 3, \frac{9}{2}]$ |
$\langle\frac{3}{2}, \frac{9}{4}, \frac{27}{8}\rangle$ |
$(3, 3, 9)$ |
$x^8 + b_{31} \pi^4 x^7 + b_{22} \pi^3 x^6 + b_{29} \pi^4 x^5 + (c_{36} \pi^5 + b_{20} \pi^3 + b_{12} \pi^2) x^4 + (b_{35} \pi^5 + a_{27} \pi^4) x^3 + a_{18} \pi^3 x^2 + b_{33} \pi^5 x + c_{24} \pi^4 + \pi$ |
$8$ |
$0$ |
$147456$ |
$36864$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a1.2-1.8.34c |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$34$ |
$4$ |
$35$ |
2.2.2.4a1.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 3, \frac{9}{2}]$ |
$\langle\frac{3}{2}, \frac{9}{4}, \frac{27}{8}\rangle$ |
$(3, 3, 9)$ |
$x^8 + b_{31} \pi^4 x^7 + b_{22} \pi^3 x^6 + b_{29} \pi^4 x^5 + (c_{36} \pi^5 + b_{20} \pi^3 + b_{12} \pi^2) x^4 + (b_{35} \pi^5 + a_{27} \pi^4) x^3 + a_{18} \pi^3 x^2 + b_{33} \pi^5 x + c_{24} \pi^4 + \pi$ |
$8$ |
$0$ |
$147456$ |
$36864$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a2.1-1.8.34c |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$34$ |
$4$ |
$35$ |
2.2.2.4a2.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 3, \frac{9}{2}]$ |
$\langle\frac{3}{2}, \frac{9}{4}, \frac{27}{8}\rangle$ |
$(3, 3, 9)$ |
$x^8 + b_{31} \pi^4 x^7 + b_{22} \pi^3 x^6 + b_{29} \pi^4 x^5 + (c_{36} \pi^5 + b_{20} \pi^3 + b_{12} \pi^2) x^4 + (b_{35} \pi^5 + a_{27} \pi^4) x^3 + a_{18} \pi^3 x^2 + b_{33} \pi^5 x + c_{24} \pi^4 + \pi$ |
$8$ |
$0$ |
$147456$ |
$73728$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.4a2.2-1.8.34c |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$34$ |
$4$ |
$35$ |
2.2.2.4a2.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 3, \frac{9}{2}]$ |
$\langle\frac{3}{2}, \frac{9}{4}, \frac{27}{8}\rangle$ |
$(3, 3, 9)$ |
$x^8 + b_{31} \pi^4 x^7 + b_{22} \pi^3 x^6 + b_{29} \pi^4 x^5 + (c_{36} \pi^5 + b_{20} \pi^3 + b_{12} \pi^2) x^4 + (b_{35} \pi^5 + a_{27} \pi^4) x^3 + a_{18} \pi^3 x^2 + b_{33} \pi^5 x + c_{24} \pi^4 + \pi$ |
$8$ |
$0$ |
$147456$ |
$73728$ |
$0$ |
$0\%$ |
$2$ |
2.2.2.6a1.1-1.8.26f |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$26$ |
$6$ |
$28$ |
2.2.2.6a1.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$8$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.6a1.2-1.8.26f |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$26$ |
$6$ |
$28$ |
2.2.2.6a1.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$8$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.6a1.3-1.8.26f |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$26$ |
$6$ |
$28$ |
2.2.2.6a1.3 |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$8$ |
$0$ |
$27648$ |
$13824$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.6a1.4-1.8.26f |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$26$ |
$6$ |
$28$ |
2.2.2.6a1.4 |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$8$ |
$0$ |
$27648$ |
$13824$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.6a1.5-1.8.26f |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$26$ |
$6$ |
$28$ |
2.2.2.6a1.5 |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$8$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.2.2.6a1.6-1.8.26f |
$2$ |
$8$ |
$4$ |
$32$ |
$1$ |
$2$ |
$2$ |
$8$ |
$2$ |
$16$ |
$26$ |
$6$ |
$28$ |
2.2.2.6a1.6 |
$[2, 3, 3, \frac{15}{4}]$ |
$[1, 2, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{19}{8}\rangle$ |
$(1, 3, 9)$ |
$x^8 + b_{23} \pi^3 x^7 + b_{14} \pi^2 x^6 + b_{21} \pi^3 x^5 + (c_{28} \pi^4 + a_{4} \pi) x^4 + (b_{27} \pi^4 + a_{19} \pi^3) x^3 + a_{10} \pi^2 x^2 + b_{25} \pi^4 x + c_{16} \pi^3 + c_{8} \pi^2 + \pi$ |
$8$ |
$0$ |
$27648$ |
$6912$ |
$0$ |
$0\%$ |
$3$ |
2.1.4.8b1.1-2.4.36c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$36$ |
$8$ |
$46$ |
2.1.4.8b1.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.2-2.4.36c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$36$ |
$8$ |
$46$ |
2.1.4.8b1.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.3-2.4.36c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$36$ |
$8$ |
$46$ |
2.1.4.8b1.3 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.4-2.4.36c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$36$ |
$8$ |
$46$ |
2.1.4.8b1.4 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.5-2.4.36c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$36$ |
$8$ |
$46$ |
2.1.4.8b1.5 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.1.4.8b1.6-2.4.36c |
$2$ |
$8$ |
$4$ |
$32$ |
$2$ |
$1$ |
$2$ |
$4$ |
$4$ |
$16$ |
$36$ |
$8$ |
$46$ |
2.1.4.8b1.6 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$8$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.1-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.2-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.3-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.3 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.4-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.4 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.5-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.5 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.6-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.6 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.7-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.7 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.8-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.8 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b1.9-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b1.9 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$1152$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.1-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.2-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.3-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.3 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.4-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.4 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.5-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.5 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.6-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.6 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.7-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.7 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.8-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.8 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.9-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.9 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.10-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.10 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.11-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.11 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b2.12-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b2.12 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$2304$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b3.1-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b3.1 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b3.2-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b3.2 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b3.3-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b3.3 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b3.4-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b3.4 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |
2.2.4.16b3.5-1.4.18c |
$2$ |
$4$ |
$8$ |
$32$ |
$1$ |
$2$ |
$2$ |
$4$ |
$4$ |
$16$ |
$18$ |
$16$ |
$23$ |
2.2.4.16b3.5 |
$[2, 3, 3, \frac{15}{4}]$ |
$[3, 6]$ |
$\langle\frac{3}{2}, \frac{15}{4}\rangle$ |
$(3, 9)$ |
$x^4 + (b_{23} \pi^6 + b_{19} \pi^5 + a_{15} \pi^4) x^3 + (b_{10} \pi^3 + a_{6} \pi^2) x^2 + (b_{21} \pi^6 + b_{17} \pi^5) x + c_{24} \pi^7 + c_{12} \pi^4 + \pi$ |
$4$ |
$0$ |
$9216$ |
$4608$ |
$0$ |
$0\%$ |
$2$ |