Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.2.8.48c13.577 |
$16$ |
$( x^{2} + x + 1 )^{8} + 6 ( x^{2} + x + 1 )^{6} + \left(12 x + 6\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 12 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 16 x + 6$ |
$2$ |
$2$ |
$8$ |
$48$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4]$ |
$[1,2,3]$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 8 t x^{5} + 2 t x^{4} + 8 x^{3} + \left(4 t + 4\right) x^{2} + 8 t x + 16 t + 2$ |
$[17, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + t,t z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7, 15]$ |
2.2.8.48c13.684 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{6} + \left(12 x + 14\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 16 x + 6$ |
$2$ |
$2$ |
$8$ |
$48$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4]$ |
$[1,2,3]$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 4 t x^{6} + \left(8 t + 8\right) x^{5} + 2 t x^{4} + 8 t x^{3} + \left(4 t + 4\right) x^{2} + 8 t x + 16 t + 2$ |
$[17, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + t,t z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7, 15]$ |
2.2.8.54a1.1142 |
$16$ |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 16 x ( x^{2} + x + 1 ) + 2$ |
$2$ |
$2$ |
$8$ |
$54$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, \frac{7}{2}, \frac{9}{2}]$ |
$[1,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[3]$ |
$[2]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 16 x^{3} + 16 t x + 2$ |
$[20, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
2.2.8.54a1.1576 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$2$ |
$2$ |
$8$ |
$54$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, \frac{7}{2}, \frac{9}{2}]$ |
$[1,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[3]$ |
$[2]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 4 x^{6} + 2 x^{4} + 16 x^{3} + 8 x^{2} + 2$ |
$[20, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
2.2.8.54a1.1740 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + \left(16 x + 16\right) ( x^{2} + x + 1 )^{3} + 2$ |
$2$ |
$2$ |
$8$ |
$54$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, \frac{7}{2}, \frac{9}{2}]$ |
$[1,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[3]$ |
$[2]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 t x^{6} + 8 t x^{5} + \left(24 t + 2\right) x^{4} + 16 x^{3} + 2$ |
$[20, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
2.2.8.54a1.2135 |
$16$ |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$2$ |
$2$ |
$8$ |
$54$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, \frac{7}{2}, \frac{9}{2}]$ |
$[1,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[3]$ |
$[2]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + \left(4 t + 4\right) x^{6} + \left(8 t + 8\right) x^{5} + 2 x^{4} + \left(16 t + 16\right) x^{3} + 8 x^{2} + 2$ |
$[20, 12, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 5, 13, 21]$ |
2.2.8.56a1.146 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 24 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 x ( x^{2} + x + 1 ) + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 24 t x^{4} + \left(8 t + 8\right) x^{2} + 16 t x + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a1.158 |
$16$ |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 16 t x^{4} + 16 t x^{3} + 8 x^{2} + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a1.715 |
$16$ |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{4} + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 4 x^{4} + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.56a1.769 |
$16$ |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{4} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$2$ |
$2$ |
$8$ |
$56$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 8 t x^{7} + 4 x^{6} + 8 x^{5} + 4 x^{4} + 16 t x^{3} + 8 t x^{2} + 16 x + 2$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.576 |
$16$ |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 48 x + 2$ |
$2$ |
$2$ |
$8$ |
$62$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, 4, 5]$ |
$[2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + \left(8 t + 8\right) x^{6} + \left(16 t + 16\right) x^{5} + 16 t x^{3} + 48 t + 2$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.577 |
$16$ |
$( x^{2} + x + 1 )^{8} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$2$ |
$2$ |
$8$ |
$62$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, 4, 5]$ |
$[2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 16 t x^{7} + \left(8 t + 8\right) x^{6} + \left(16 t + 16\right) x^{5} + 16 t x^{3} + 16 t + 2$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.10357 |
$16$ |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$2$ |
$2$ |
$8$ |
$62$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, 4, 5]$ |
$[2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.10360 |
$16$ |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ |
$2$ |
$2$ |
$8$ |
$62$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[3, 4, 5]$ |
$[2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$4$ |
$t^{2} + t + 1$ |
$x^{8} + 16 t x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 32 t + 2$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.16.40k1.13 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$40$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 2, \frac{5}{2}, 3]$ |
$[1,1,\frac{3}{2},2]$ |
$[2, 2, \frac{5}{2}, 3]^{2}$ |
$[1,1,\frac{3}{2},2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 2$ |
$[25, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 18, 34]$ |
2.1.16.40k1.14 |
$16$ |
$x^{16} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 10$ |
$2$ |
$1$ |
$16$ |
$40$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 2, \frac{5}{2}, 3]$ |
$[1,1,\frac{3}{2},2]$ |
$[2, 2, \frac{5}{2}, 3]^{2}$ |
$[1,1,\frac{3}{2},2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 10$ |
$[25, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 9, 32, 48]$ |
2.1.16.40k1.36 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 6$ |
$2$ |
$1$ |
$16$ |
$40$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 2, \frac{5}{2}, 3]$ |
$[1,1,\frac{3}{2},2]$ |
$[2, 2, \frac{5}{2}, 3]^{2}$ |
$[1,1,\frac{3}{2},2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 6$ |
$[25, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
2.1.16.40k1.37 |
$16$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 14$ |
$2$ |
$1$ |
$16$ |
$40$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 2, \frac{5}{2}, 3]$ |
$[1,1,\frac{3}{2},2]$ |
$[2, 2, \frac{5}{2}, 3]^{2}$ |
$[1,1,\frac{3}{2},2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 14$ |
$[25, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
2.1.16.50h1.435 |
$16$ |
$x^{16} + 4 x^{14} + 2 x^{12} + 8 x^{9} + 8 x^{7} + 4 x^{6} + 8 x^{3} + 6$ |
$2$ |
$1$ |
$16$ |
$50$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 2, 3, 4]$ |
$[1,1,2,3]$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{14} + 2 x^{12} + 8 x^{9} + 8 x^{7} + 4 x^{6} + 8 x^{3} + 6$ |
$[35, 22, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
2.1.16.50h1.484 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 2 x^{12} + 8 x^{9} + 8 x^{7} + 4 x^{6} + 8 x^{3} + 14$ |
$2$ |
$1$ |
$16$ |
$50$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 2, 3, 4]$ |
$[1,1,2,3]$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 2 x^{12} + 8 x^{9} + 8 x^{7} + 4 x^{6} + 8 x^{3} + 14$ |
$[35, 22, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
2.1.16.58m1.404 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 16 x + 2$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 16 x + 2$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 23, 39, 55]$ |
2.1.16.58m1.586 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 23, 39, 55]$ |
2.1.16.58m1.645 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 16 x^{7} + 4 x^{4} + 16 x + 10$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 16 x^{7} + 4 x^{4} + 16 x + 10$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
2.1.16.58m1.768 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
2.1.16.58m1.903 |
$16$ |
$x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x + 6$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x + 6$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.58m1.1021 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{11} + 10 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 6$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{11} + 10 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 6$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.58m1.1146 |
$16$ |
$x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 10 x^{8} + 8 x^{6} + 4 x^{4} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 10 x^{8} + 8 x^{6} + 4 x^{4} + 16 x + 14$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.58m1.1214 |
$16$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{11} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$58$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
$[1,2,\frac{5}{2},\frac{7}{2}]$ |
$[2, 3, \frac{7}{2}, \frac{9}{2}]^{2}$ |
$[1,2,\frac{5}{2},\frac{7}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{11} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 14$ |
$[43, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.282 |
$16$ |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 13, 29, 45, 61]$ |
2.1.16.64g1.856 |
$16$ |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 10$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 10$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.4300 |
$16$ |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 6$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 6$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4465 |
$16$ |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4466 |
$16$ |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4569 |
$16$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4570 |
$16$ |
$x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4870 |
$16$ |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 14$ |
$2$ |
$1$ |
$16$ |
$64$ |
$C_2\times \SD_{16}$ (as 16T48) |
$2$ |
$1$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$4$ |
$t + 1$ |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 14$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |