Properties

Label 2.1.16.40k1.36
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(40\)
Galois group $C_2\times \SD_{16}$ (as 16T48)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $40$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{5}{2}, 3]$
Visible Swan slopes:$[1,1,\frac{3}{2},2]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}, \frac{25}{16}\rangle$
Rams:$(1, 1, 3, 7)$
Jump set:$[1, 3, 6, 12, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.1.4.6a1.2, 2.1.4.8b1.4, 2.1.4.8b1.5, 2.1.8.18b1.8, 2.1.8.18b1.12, 2.1.8.16c1.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{12} + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[25, 18, 12, 12, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_2\times \SD_{16}$ (as 16T48)
Inertia group: $C_2\times Q_8$ (as 16T7)
Wild inertia group: $C_2\times Q_8$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, \frac{5}{2}, 3]$
Galois Swan slopes: $[1,1,\frac{3}{2},2]$
Galois mean slope: $2.5$
Galois splitting model:$x^{16} + 4 x^{14} + 4 x^{12} + 16 x^{10} - 20 x^{8} - 8 x^{6} + 16 x^{4} + 16 x^{2} + 4$