Defining polynomial
\(x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 6\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $40$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2^2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 2, \frac{5}{2}, 3]$ |
Visible Swan slopes: | $[1,1,\frac{3}{2},2]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}, \frac{25}{16}\rangle$ |
Rams: | $(1, 1, 3, 7)$ |
Jump set: | $[1, 3, 6, 12, 32]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.1.4.6a1.2, 2.1.4.8b1.4, 2.1.4.8b1.5, 2.1.8.18b1.8, 2.1.8.18b1.12, 2.1.8.16c1.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{9} + 4 x^{6} + 4 x^{2} + 6 \)
|
Ramification polygon
Residual polynomials: | $z^{12} + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $2$,$1$,$1$ |
Indices of inseparability: | $[25, 18, 12, 12, 0]$ |
Invariants of the Galois closure
Galois degree: | $32$ |
Galois group: | $C_2\times \SD_{16}$ (as 16T48) |
Inertia group: | $C_2\times Q_8$ (as 16T7) |
Wild inertia group: | $C_2\times Q_8$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, \frac{5}{2}, 3]$ |
Galois Swan slopes: | $[1,1,\frac{3}{2},2]$ |
Galois mean slope: | $2.5$ |
Galois splitting model: | $x^{16} + 4 x^{14} + 4 x^{12} + 16 x^{10} - 20 x^{8} - 8 x^{6} + 16 x^{4} + 16 x^{2} + 4$ |