Properties

Label 2.2.8.48c13.684
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(48\)
Galois group $C_2\times \SD_{16}$ (as 16T48)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{6} + \left(12 x + 14\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 16 x + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $48$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 4]$
Visible Swan slopes:$[1,2,3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$
Rams:$(1, 3, 7)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.2.2.4a2.2, 2.2.2.6a1.5, 2.2.2.6a1.3, 2.2.4.16b5.11, 2.2.4.22a1.37, 2.2.4.22a1.38

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 4 t x^{6} + \left(8 t + 8\right) x^{5} + 2 t x^{4} + 8 t x^{3} + \left(4 t + 4\right) x^{2} + 8 t x + 16 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + t$,$t z^2 + (t + 1)$,$(t + 1) z + t$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[17, 10, 4, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_2\times \SD_{16}$ (as 16T48)
Inertia group: Intransitive group isomorphic to $C_2\times D_4$
Wild inertia group: $C_2\times D_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, 4]$
Galois Swan slopes: $[1,1,2,3]$
Galois mean slope: $3.125$
Galois splitting model: $x^{16} - 20 x^{14} + 130 x^{12} - 200 x^{10} - 1125 x^{8} + 4000 x^{6} - 3000 x^{4} - 2500 x^{2} + 625$ Copy content Toggle raw display