Learn more

Refine search


Results (1-50 of 72 matches)

Next   displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.12.24b1.44 $x^{12} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ $[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.45 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ $[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.46 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 10$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ $[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 10$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.47 $x^{12} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 4 x + 2$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ $[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 4 x + 2$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.76 $x^{12} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ $[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.77 $x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ $[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.78 $x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 10$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ $[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 10$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.24b1.79 $x^{12} + 4 x^{11} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ $2$ $1$ $12$ $24$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, 3]$ $[\frac{1}{3},2]$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ $[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ $[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ $[13, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.72 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.73 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 10 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 10 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.74 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 8 x + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 8 x + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.80 $x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.81 $x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 10 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 10 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.88 $x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.89 $x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.95 $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.96 $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 8 x + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 8 x + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.97 $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 8 x + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 8 x + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.109 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.110 $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.116 $x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.117 $x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.118 $x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.25a1.123 $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 8 x + 2$ $2$ $1$ $12$ $25$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{4}{3}, \frac{19}{6}]$ $[\frac{1}{3},\frac{13}{6}]$ $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ $[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ $[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ $t + 1$ $x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 8 x + 2$ $[14, 2, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 7, 19]$
2.1.12.30a1.89 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.90 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.91 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.92 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.93 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.94 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.95 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.96 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.121 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.122 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.123 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.124 $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.125 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.126 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.127 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.30a1.128 $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $2$ $1$ $12$ $30$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{10}{3}]$ $[\frac{5}{3},\frac{7}{3}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ $[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ $t + 1$ $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ $[19, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.321 $x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.322 $x^{12} + 10 x^{10} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 10 x^{10} + 4 x^{8} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.323 $x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.324 $x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.329 $x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.330 $x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.331 $x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.332 $x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.341 $x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
2.1.12.33a1.342 $x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ $2$ $1$ $12$ $33$ $C_2^4:S_4$ (as 12T137) $2$ $3$ $[\frac{8}{3}, \frac{23}{6}]$ $[\frac{5}{3},\frac{17}{6}]$ $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ $[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ $[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ $[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ $t + 1$ $x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ $[22, 10, 0]$ $[2, 1, 1]$ $z^8 + z^4 + 1,z^2 + 1,z + 1$ $[3, 9, 21]$
Next   displayed columns for results