Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.12.24b1.44 |
$12$ |
$x^{12} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.45 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.46 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 10$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 4 x + 10$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.47 |
$12$ |
$x^{12} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.76 |
$12$ |
$x^{12} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.77 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.78 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 10$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 10$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.24b1.79 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2]_{3}^{2}$ |
$[\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]^{2}$ |
$[\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.72 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.73 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 10 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 10 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.74 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 2 x^{2} + 8 x + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.80 |
$12$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.81 |
$12$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 10 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 10 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.88 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.89 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.95 |
$12$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.96 |
$12$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2 x^{2} + 8 x + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.97 |
$12$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 8 x + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.109 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.110 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.116 |
$12$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 4 x^{9} + 4 x^{7} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.117 |
$12$ |
$x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.118 |
$12$ |
$x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 10 x^{2} + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.25a1.123 |
$12$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$12$ |
$25$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3},\frac{13}{6}]$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ |
$[\frac{4}{3},2,3,\frac{19}{6}]^{2}$ |
$[\frac{1}{3},1,2,\frac{13}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 x^{2} + 8 x + 2$ |
$[14, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
2.1.12.30a1.89 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.90 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.91 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.92 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.93 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.94 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.95 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.96 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.121 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.122 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.123 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.124 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.125 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.126 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.127 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.30a1.128 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$30$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3},\frac{7}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{10}{3}]^{2}$ |
$[1,\frac{5}{3},2,\frac{7}{3}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 2$ |
$[19, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.321 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.322 |
$12$ |
$x^{12} + 10 x^{10} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 10 x^{10} + 4 x^{8} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.323 |
$12$ |
$x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.324 |
$12$ |
$x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.329 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.330 |
$12$ |
$x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.331 |
$12$ |
$x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.332 |
$12$ |
$x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 10 x^{10} + 8 x^{9} + 4 x^{8} + 8 x^{5} + 4 x^{2} + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.341 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.33a1.342 |
$12$ |
$x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ |
$2$ |
$1$ |
$12$ |
$33$ |
$C_2^4:S_4$ (as 12T137) |
$2$ |
$3$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3},\frac{17}{6}]$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6}]_{3}^{2}$ |
$[2,\frac{8}{3},3,\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},2,\frac{17}{6}]^{2}$ |
$2$ |
$t + 1$ |
$x^{12} + 10 x^{10} + 4 x^{8} + 8 x^{7} + 4 x^{2} + 8 x + 2$ |
$[22, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |