Properties

Label 2.1.12.25a1.89
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(25\)
Galois group $C_2^4:S_4$ (as 12T137)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $25$
Discriminant root field: $\Q_{2}(\sqrt{-2\cdot 5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{19}{6}]$
Visible Swan slopes:$[\frac{1}{3},\frac{13}{6}]$
Means:$\langle\frac{1}{6}, \frac{7}{6}\rangle$
Rams:$(1, 12)$
Jump set:$[3, 7, 19]$
Roots of unity:$2$

Intermediate fields

2.1.3.2a1.1, 2.1.6.6a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{11} + 4 x^{5} + 2 x^{4} + 10 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[14, 2, 0]$

Invariants of the Galois closure

Galois degree: $384$
Galois group: $C_2^4:S_4$ (as 12T137)
Inertia group: $C_2^4:A_4$ (as 12T88)
Wild inertia group: $C_2^3:D_4$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6}]$
Galois mean slope: $2.9479166666666665$
Galois splitting model:$x^{12} - 4 x^{10} + 6 x^{8} - 4 x^{6} - 76 x^{4} + 88$