Show commands: Magma
Group invariants
Abstract group: | $C_2^4:S_4$ |
| |
Order: | $384=2^{7} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $12$ |
| |
Transitive number $t$: | $137$ |
| |
CHM label: | $[2^{4}]S_{4}(6d)$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(2,8)(3,9)(4,10)(5,11)$, $(1,12)(2,3)(4,5)$, $(1,5,9)(2,6,10)(3,7,11)(4,8,12)$, $(1,12)(6,7)$, $(2,10)(3,11)(4,8)(5,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 3 $96$: 12T48 $192$: $V_4^2:(S_3\times C_2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Low degree siblings
12T136 x 4, 12T137 x 3, 16T724 x 4, 24T1143 x 2, 24T1144 x 2, 24T1184 x 2, 24T1185 x 4, 24T1186 x 2, 24T1187 x 4, 24T1188 x 4, 24T1189 x 4, 24T1190 x 4, 24T1191 x 2, 24T1192 x 4, 24T1193 x 2, 24T1194 x 4, 24T1195 x 8, 24T1196 x 8, 24T1197 x 8, 24T1198 x 8, 32T9332 x 2, 32T9457 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
2B | $2^{2},1^{8}$ | $3$ | $2$ | $2$ | $( 1,12)( 6, 7)$ |
2C | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
2D | $2^{3},1^{6}$ | $4$ | $2$ | $3$ | $(2,3)(4,5)(6,7)$ |
2E | $2^{3},1^{6}$ | $4$ | $2$ | $3$ | $( 1,12)( 2, 3)( 4, 5)$ |
2F | $2^{4},1^{4}$ | $6$ | $2$ | $4$ | $( 1, 6)( 4,10)( 5,11)( 7,12)$ |
2G | $2^{6}$ | $6$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4, 5)( 6,12)(10,11)$ |
2H | $2^{4},1^{4}$ | $6$ | $2$ | $4$ | $( 2, 9)( 3, 8)( 4,11)( 5,10)$ |
2I | $2^{6}$ | $6$ | $2$ | $6$ | $( 1, 7)( 2, 9)( 3, 8)( 4, 5)( 6,12)(10,11)$ |
2J | $2^{5},1^{2}$ | $12$ | $2$ | $5$ | $( 1,12)( 2, 5)( 3, 4)( 8,10)( 9,11)$ |
2K | $2^{5},1^{2}$ | $12$ | $2$ | $5$ | $( 2, 4)( 3, 5)( 6, 7)( 8,11)( 9,10)$ |
2L | $2^{4},1^{4}$ | $12$ | $2$ | $4$ | $( 1, 3)( 2,12)( 6, 8)( 7, 9)$ |
2M | $2^{6}$ | $12$ | $2$ | $6$ | $( 1, 2)( 3,12)( 4, 5)( 6, 9)( 7, 8)(10,11)$ |
3A | $3^{4}$ | $32$ | $3$ | $8$ | $( 1, 8,11)( 2, 5, 7)( 3, 4, 6)( 9,10,12)$ |
4A | $4^{2},2,1^{2}$ | $12$ | $4$ | $7$ | $( 2, 9, 3, 8)( 4,10, 5,11)( 6, 7)$ |
4B | $4^{2},2,1^{2}$ | $12$ | $4$ | $7$ | $( 1,12)( 2, 8, 3, 9)( 4,11, 5,10)$ |
4C | $4^{2},2^{2}$ | $12$ | $4$ | $8$ | $( 1,12)( 2,11, 3,10)( 4, 8, 5, 9)( 6, 7)$ |
4D | $4^{2},1^{4}$ | $12$ | $4$ | $6$ | $( 2,10, 3,11)( 4, 9, 5, 8)$ |
4E | $4^{2},2,1^{2}$ | $12$ | $4$ | $7$ | $( 1, 9,12, 8)( 2, 6, 3, 7)( 4, 5)$ |
4F | $4^{2},2,1^{2}$ | $12$ | $4$ | $7$ | $( 1, 8,12, 9)( 2, 7, 3, 6)(10,11)$ |
4G | $4^{2},2^{2}$ | $24$ | $4$ | $8$ | $( 1, 7)( 2, 5, 9,10)( 3, 4, 8,11)( 6,12)$ |
4H | $4^{2},2^{2}$ | $24$ | $4$ | $8$ | $( 1, 7)( 2,10, 8, 4)( 3,11, 9, 5)( 6,12)$ |
4I | $4^{3}$ | $24$ | $4$ | $9$ | $( 1, 8, 7, 3)( 2,12, 9, 6)( 4,10, 5,11)$ |
4J | $4^{3}$ | $24$ | $4$ | $9$ | $( 1, 3, 6, 9)( 2, 7, 8,12)( 4,11, 5,10)$ |
6A | $6,3^{2}$ | $32$ | $6$ | $9$ | $( 1,11, 8)( 2, 6, 5, 3, 7, 4)( 9,12,10)$ |
6B | $6,3^{2}$ | $32$ | $6$ | $9$ | $( 1, 4, 3,12, 5, 2)( 6,10, 8)( 7,11, 9)$ |
6C | $6^{2}$ | $32$ | $6$ | $10$ | $( 1,11, 8,12,10, 9)( 2, 6, 4, 3, 7, 5)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 3A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | ||
Size | 1 | 1 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 32 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 | 32 | 32 | 32 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 2C | 2C | 2C | 2C | 2H | 2H | 2I | 2I | 3A | 3A | 3A | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 1A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 2D | 2E | 2A | |
Type | |||||||||||||||||||||||||||||
384.17948.1a | R | ||||||||||||||||||||||||||||
384.17948.1b | R | ||||||||||||||||||||||||||||
384.17948.1c | R | ||||||||||||||||||||||||||||
384.17948.1d | R | ||||||||||||||||||||||||||||
384.17948.1e | R | ||||||||||||||||||||||||||||
384.17948.1f | R | ||||||||||||||||||||||||||||
384.17948.1g | R | ||||||||||||||||||||||||||||
384.17948.1h | R | ||||||||||||||||||||||||||||
384.17948.2a | R | ||||||||||||||||||||||||||||
384.17948.2b | R | ||||||||||||||||||||||||||||
384.17948.2c | R | ||||||||||||||||||||||||||||
384.17948.2d | R | ||||||||||||||||||||||||||||
384.17948.3a | R | ||||||||||||||||||||||||||||
384.17948.3b | R | ||||||||||||||||||||||||||||
384.17948.3c | R | ||||||||||||||||||||||||||||
384.17948.3d | R | ||||||||||||||||||||||||||||
384.17948.3e | R | ||||||||||||||||||||||||||||
384.17948.3f | R | ||||||||||||||||||||||||||||
384.17948.3g | R | ||||||||||||||||||||||||||||
384.17948.3h | R | ||||||||||||||||||||||||||||
384.17948.6a | R | ||||||||||||||||||||||||||||
384.17948.6b | R | ||||||||||||||||||||||||||||
384.17948.6c | R | ||||||||||||||||||||||||||||
384.17948.6d | R | ||||||||||||||||||||||||||||
384.17948.6e | R | ||||||||||||||||||||||||||||
384.17948.6f | R | ||||||||||||||||||||||||||||
384.17948.6g | R | ||||||||||||||||||||||||||||
384.17948.6h | R |
Regular extensions
Data not computed