Defining polynomial
|
\(x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2\)
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $12$ |
| Ramification index $e$: | $12$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $30$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-5})$ |
| Root number: | $-i$ |
| $\Aut(K/\Q_{2})$: | $C_2$ |
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[\frac{8}{3}, \frac{10}{3}]$ |
| Visible Swan slopes: | $[\frac{5}{3},\frac{7}{3}]$ |
| Means: | $\langle\frac{5}{6}, \frac{19}{12}\rangle$ |
| Rams: | $(5, 9)$ |
| Jump set: | $[3, 9, 21]$ |
| Roots of unity: | $2$ |
Intermediate fields
| 2.1.3.2a1.1, 2.1.6.10a1.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: |
\( x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 2 \)
|
Ramification polygon
| Residual polynomials: | $z^8 + z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $2$,$1$,$1$ |
| Indices of inseparability: | $[19, 10, 0]$ |
Invariants of the Galois closure
| Galois degree: | $384$ |
| Galois group: | $C_2^4:S_4$ (as 12T137) |
| Inertia group: | $C_2^4:A_4$ (as 12T88) |
| Wild inertia group: | $C_2^3:D_4$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $3$ |
| Galois Artin slopes: | $[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{10}{3}, \frac{10}{3}]$ |
| Galois Swan slopes: | $[1,\frac{5}{3},\frac{5}{3},2,\frac{7}{3},\frac{7}{3}]$ |
| Galois mean slope: | $3.1666666666666665$ |
| Galois splitting model: | $x^{12} + 10 x^{10} + 37 x^{8} + 68 x^{6} + 63 x^{4} + 42 x^{2} + 11$ |