Defining polynomial
$( x^{4} + 5 x^{2} + 4 x + 3 )^{3} + 7 x$
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $1$ |
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: | $C_{12}$ |
This field is Galois and abelian over $\Q_{7}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $2400 = (7^{ 4 } - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{3})$, 7.1.3.2a1.3, 7.4.1.0a1.1, 7.2.3.4a1.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 7.4.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{4} + 5 x^{2} + 4 x + 3 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 7 t \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + 3 z + 3$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $12$ |
Galois group: | $C_{12}$ (as 12T1) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $3$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.6666666666666666$ |
Galois splitting model: | $x^{12} - x^{11} + x^{10} - 27 x^{9} + 27 x^{8} - 183 x^{7} + 326 x^{6} + 649 x^{5} + 131 x^{4} - 573 x^{3} + 1782 x^{2} - 2133 x + 4941$ |