Properties

Label 7.4.3.8a1.2
Base \(\Q_{7}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 5 x^{2} + 4 x + 3 )^{3} + 7 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $12$
Ramification index $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: $C_{12}$
This field is Galois and abelian over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$2400 = (7^{ 4 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.1.3.2a1.3, 7.4.1.0a1.1, 7.2.3.4a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:7.4.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{4} + 5 x^{2} + 4 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 7 t \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 3 z + 3$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_{12}$ (as 12T1)
Inertia group: Intransitive group isomorphic to $C_3$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.6666666666666666$
Galois splitting model:$x^{12} - x^{11} + x^{10} - 27 x^{9} + 27 x^{8} - 183 x^{7} + 326 x^{6} + 649 x^{5} + 131 x^{4} - 573 x^{3} + 1782 x^{2} - 2133 x + 4941$