| Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Narrow class group |
Unit group torsion |
Unit group rank |
Regulator |
| 12.4.175927764892578125.1 |
$x^{12} - 4 x^{11} + 4 x^{10} + 15 x^{9} - 60 x^{8} + 83 x^{7} + 38 x^{6} - 243 x^{5} + 285 x^{4} - 115 x^{3} + 6 x^{2} + 6 x - 1$ |
$12$ |
[4,4] |
$5^{15}\cdot 7^{8}$ |
$2$ |
$27.359691667993516$ |
|
|
|
? |
$A_5:C_4$ (as 12T124) |
$[3]$ |
$[3]$ |
$2$ |
$7$ |
$7224.793491414102$ |
| 12.4.175927764892578125.2 |
$x^{12} + 10 x^{10} + 35 x^{8} - 40 x^{6} - 245 x^{4} + 17 x^{2} + 405$ |
$12$ |
[4,4] |
$5^{15}\cdot 7^{8}$ |
$2$ |
$27.359691667993516$ |
|
|
|
? |
$A_5:C_4$ (as 12T124) |
$[3]$ |
$[3]$ |
$2$ |
$7$ |
$7224.793491414102$ |
| 12.0.273...096.1 |
$x^{12} - 7 x^{10} - 46 x^{9} + 61 x^{8} + 308 x^{7} + 199 x^{6} - 1726 x^{5} - 974 x^{4} + 2360 x^{3} + 3792 x^{2} + 2176 x + 512$ |
$12$ |
[0,6] |
$2^{12}\cdot 7^{8}\cdot 41^{5}$ |
$3$ |
$34.38919126948935$ |
$46.86197816804901$ |
|
|
|
$D_{12}$ (as 12T12) |
$[3]$ |
$[3]$ |
$4$ |
$5$ |
$498519.9105119069$ |
| 12.0.103...637.2 |
$x^{12} - x^{11} + x^{10} - 27 x^{9} + 27 x^{8} - 183 x^{7} + 326 x^{6} + 649 x^{5} + 131 x^{4} - 573 x^{3} + 1782 x^{2} - 2133 x + 4941$ |
$12$ |
[0,6] |
$7^{8}\cdot 13^{11}$ |
$2$ |
$38.4161141302$ |
$38.416114130176354$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[111]$ |
$[111]$ |
$2$ |
$5$ |
$17569.0378451$ |
| 12.2.280...984.1 |
$x^{12} - 3 x^{11} + 23 x^{10} - 59 x^{9} + 170 x^{8} - 292 x^{7} + 684 x^{6} - 412 x^{5} + 472 x^{4} - 2048 x^{2} + 3328 x - 512$ |
$12$ |
[2,5] |
$-\,2^{10}\cdot 7^{8}\cdot 41^{6}$ |
$3$ |
$41.749276279435435$ |
$46.86197816804901$ |
|
|
|
$D_{12}$ (as 12T12) |
$[3]$ |
$[3]$ |
$2$ |
$6$ |
$2073407.686961487$ |
| 12.0.484...125.1 |
$x^{12} + 21 x^{10} - 28 x^{9} + 441 x^{8} + 1764 x^{7} + 10045 x^{6} + 24696 x^{5} + 161553 x^{4} + 237356 x^{3} + 345744 x^{2} + 460992 x + 614656$ |
$12$ |
[0,6] |
$3^{16}\cdot 5^{9}\cdot 7^{8}$ |
$3$ |
$52.9404793803$ |
$52.940479380274844$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[7, 21]$ |
$[7, 21]$ |
$10$ |
$5$ |
$7692.76761765$ |
| 12.12.436...125.1 |
$x^{12} - 84 x^{10} - 28 x^{9} + 2646 x^{8} + 1764 x^{7} - 37975 x^{6} - 37044 x^{5} + 233583 x^{4} + 285376 x^{3} - 410571 x^{2} - 547428 x - 141659$ |
$12$ |
[12,0] |
$3^{18}\cdot 5^{9}\cdot 7^{8}$ |
$3$ |
$63.5781781125$ |
$63.57817811250523$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3]$ |
$[6]$ |
$2$ |
$11$ |
$3423844.99135$ |
| 12.12.753...373.2 |
$x^{12} - x^{11} - 64 x^{10} + 116 x^{9} + 1262 x^{8} - 3082 x^{7} - 8696 x^{6} + 27507 x^{5} + 13677 x^{4} - 82044 x^{3} + 29277 x^{2} + 33669 x + 4941$ |
$12$ |
[12,0] |
$3^{6}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$66.5386615028$ |
$66.53866150283011$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 2, 2, 2, 2, 6]$ |
$2$ |
$11$ |
$26634046.3424$ |
| 12.0.918...125.1 |
$x^{12} - x^{11} + 31 x^{10} - 88 x^{9} + 1045 x^{8} + 4314 x^{7} + 29412 x^{6} + 71793 x^{5} + 694089 x^{4} + 665577 x^{3} + 636417 x^{2} + 590490 x + 531441$ |
$12$ |
[0,6] |
$5^{9}\cdot 7^{8}\cdot 13^{8}$ |
$3$ |
$67.6480213151$ |
$67.64802131514648$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[543]$ |
$[543]$ |
$10$ |
$5$ |
$14951.9328847$ |
| 12.12.423...152.2 |
$x^{12} - 65 x^{10} + 1365 x^{8} - 10400 x^{6} + 31486 x^{4} - 36387 x^{2} + 9477$ |
$12$ |
[12,0] |
$2^{12}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$76.8322282604$ |
$76.83222826035271$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[6]$ |
$2$ |
$11$ |
$9476244.81775$ |
| 12.0.161...125.2 |
$x^{12} - x^{11} + 66 x^{10} - 170 x^{9} + 1522 x^{8} - 6722 x^{7} + 16420 x^{6} - 53951 x^{5} + 113985 x^{4} - 193480 x^{3} + 566437 x^{2} - 848667 x + 1851669$ |
$12$ |
[0,6] |
$5^{6}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$85.9010426265$ |
$85.90104262646453$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[222]$ |
$[222]$ |
$2$ |
$5$ |
$17569.0378451$ |
| 12.0.155...125.2 |
$x^{12} - x^{11} + 36 x^{10} - 93 x^{9} + 755 x^{8} - 601 x^{7} + 26362 x^{6} + 75373 x^{5} + 756239 x^{4} + 1558347 x^{3} + 11125737 x^{2} + 12609945 x + 57572451$ |
$12$ |
[0,6] |
$5^{9}\cdot 7^{8}\cdot 13^{10}$ |
$3$ |
$103.731897806$ |
$103.73189780646314$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[942]$ |
$[942]$ |
$2$ |
$5$ |
$14951.9328847$ |
| 12.2.169...603.1 |
$x^{12} - 2 x^{11} + 46 x^{10} - 57 x^{9} + 554 x^{8} - 460 x^{7} + 3071 x^{6} + 3342 x^{5} + 4882 x^{4} + 22609 x^{3} - 44486 x^{2} + 61908 x - 32976$ |
$12$ |
[2,5] |
$-\,7^{8}\cdot 17^{9}\cdot 19^{5}$ |
$3$ |
$104.48390238732186$ |
$133.54024997365337$ |
|
|
|
$D_{12}$ (as 12T12) |
$[2, 2, 24]$ |
$[2, 2, 24]$ |
$2$ |
$6$ |
$6388359.667579785$ |
| 12.12.198...000.1 |
$x^{12} - 99 x^{10} - 112 x^{9} + 3366 x^{8} + 7056 x^{7} - 42695 x^{6} - 128016 x^{5} + 130818 x^{4} + 710304 x^{3} + 519249 x^{2} - 148512 x - 77939$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$105.880958761$ |
$105.88095876054969$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 2, 6]$ |
$2$ |
$11$ |
$98920085.7639$ |
| 12.0.263...333.1 |
$x^{12} - 3 x^{11} - 75 x^{10} + 97 x^{9} + 2460 x^{8} + 2109 x^{7} - 34492 x^{6} - 101877 x^{5} + 51684 x^{4} + 774353 x^{3} + 2023611 x^{2} + 3100212 x + 2269749$ |
$12$ |
[0,6] |
$3^{16}\cdot 7^{8}\cdot 13^{9}$ |
$3$ |
$108.397154178$ |
$108.39715417800616$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[3, 3, 111]$ |
$[3, 3, 111]$ |
$2$ |
$5$ |
$51098.6413437$ |
| 12.12.270...728.1 |
$x^{12} - 130 x^{10} + 5460 x^{8} - 83200 x^{6} + 503776 x^{4} - 1164384 x^{2} + 606528$ |
$12$ |
[12,0] |
$2^{18}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$108.657179233$ |
$108.65717923313618$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[6]$ |
$2$ |
$11$ |
$4647698652.49$ |
| 12.0.270...728.1 |
$x^{12} + 130 x^{10} + 5460 x^{8} + 83200 x^{6} + 503776 x^{4} + 1164384 x^{2} + 606528$ |
$12$ |
[0,6] |
$2^{18}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$108.657179233$ |
$108.65717923313618$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[1014]$ |
$[1014]$ |
$2$ |
$5$ |
$17569.0378451$ |
| 12.12.669...125.1 |
$x^{12} - x^{11} - 134 x^{10} - 42 x^{9} + 6453 x^{8} + 9262 x^{7} - 129420 x^{6} - 317968 x^{5} + 844281 x^{4} + 3312369 x^{3} + 1686664 x^{2} - 3139715 x - 2227259$ |
$12$ |
[12,0] |
$3^{6}\cdot 5^{9}\cdot 7^{8}\cdot 13^{8}$ |
$4$ |
$117.169809949$ |
$117.16980994933608$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 2, 6]$ |
$2$ |
$11$ |
$94837943.3263$ |
| 12.0.960...125.1 |
$x^{12} - x^{11} + 73 x^{10} - 354 x^{9} + 5819 x^{8} + 56002 x^{7} + 436952 x^{6} + 2379021 x^{5} + 17377105 x^{4} + 62589439 x^{3} + 217312975 x^{2} + 657311688 x + 1908029761$ |
$12$ |
[0,6] |
$5^{9}\cdot 7^{8}\cdot 31^{8}$ |
$3$ |
$120.744491207$ |
$120.7444912071623$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[3, 3, 291]$ |
$[3, 3, 291]$ |
$10$ |
$5$ |
$77168.0681715$ |
| 12.0.178...000.1 |
$x^{12} - 39 x^{10} - 112 x^{9} + 1566 x^{8} + 7056 x^{7} - 9795 x^{6} - 178416 x^{5} - 262422 x^{4} + 2113664 x^{3} + 14133069 x^{2} + 32305728 x + 40176541$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{18}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$127.156356225$ |
$127.15635622501046$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 2, 1158]$ |
$[2, 2, 2, 1158]$ |
$2$ |
$5$ |
$7692.76761765$ |
| 12.12.183...357.1 |
$x^{12} - x^{11} - 168 x^{10} + 90 x^{9} + 8061 x^{8} + 3756 x^{7} - 138670 x^{6} - 167987 x^{5} + 629682 x^{4} + 675765 x^{3} - 869751 x^{2} - 646218 x + 240813$ |
$12$ |
[12,0] |
$7^{8}\cdot 11^{6}\cdot 13^{11}$ |
$3$ |
$127.411836473$ |
$127.41183647326525$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 2, 6]$ |
$2$ |
$11$ |
$12566824828.0$ |
| 12.12.236...997.1 |
$x^{12} - 3 x^{11} - 114 x^{10} + 136 x^{9} + 4488 x^{8} - 1011 x^{7} - 77639 x^{6} - 21576 x^{5} + 616131 x^{4} + 324111 x^{3} - 1934109 x^{2} - 1117989 x + 936963$ |
$12$ |
[12,0] |
$3^{18}\cdot 7^{8}\cdot 13^{9}$ |
$3$ |
$130.178148288$ |
$130.17814828827844$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 6]$ |
$2$ |
$11$ |
$371545780.471$ |
| 12.12.294...937.1 |
$x^{12} - 3 x^{11} - 99 x^{10} + 136 x^{9} + 3552 x^{8} - 84 x^{7} - 54369 x^{6} - 53109 x^{5} + 303915 x^{4} + 504060 x^{3} - 257076 x^{2} - 788400 x - 333136$ |
$12$ |
[12,0] |
$3^{16}\cdot 7^{8}\cdot 17^{9}$ |
$3$ |
$132.55528791$ |
$132.55528790956586$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[3]$ |
$2$ |
$11$ |
$888313809.963$ |
| 12.0.308...808.1 |
$x^{12} - 2 x^{11} + 56 x^{10} - 8 x^{9} + 3305 x^{8} + 11356 x^{7} + 74788 x^{6} + 244116 x^{5} - 103185 x^{4} - 1631232 x^{3} + 21735243 x^{2} - 37888182 x + 66687921$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{6}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$133.077323006$ |
$133.07732300566022$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 2, 4, 156]$ |
$[2, 2, 2, 2, 2, 4, 156]$ |
$2$ |
$5$ |
$17569.0378451$ |
| 12.0.321...457.2 |
$x^{12} - 4 x^{11} + 77 x^{10} - 258 x^{9} + 2340 x^{8} - 5784 x^{7} + 29031 x^{6} - 23424 x^{5} + 121727 x^{4} + 81118 x^{3} - 67040 x^{2} - 429864 x + 1494576$ |
$12$ |
[0,6] |
$7^{8}\cdot 17^{9}\cdot 19^{6}$ |
$3$ |
$133.54024997365337$ |
$133.54024997365337$ |
|
|
|
$D_{12}$ (as 12T12) |
$[2, 8, 24]$ |
$[2, 8, 24]$ |
$2$ |
$5$ |
$3049754.810478772$ |
| 12.12.376...000.1 |
$x^{12} - 4 x^{11} - 129 x^{10} + 298 x^{9} + 6290 x^{8} - 3884 x^{7} - 134983 x^{6} - 106618 x^{5} + 1102129 x^{4} + 2022788 x^{3} - 799198 x^{2} - 2327730 x + 515761$ |
$12$ |
[12,0] |
$2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 13^{8}$ |
$4$ |
$135.29604263$ |
$135.29604263029296$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3]$ |
$[6]$ |
$2$ |
$11$ |
$335702162.025$ |
| 12.0.395...125.2 |
$x^{12} - x^{11} + 87 x^{10} + 38 x^{9} + 7233 x^{8} - 39982 x^{7} + 670038 x^{6} - 2582327 x^{5} + 51769393 x^{4} - 132471497 x^{3} + 338671247 x^{2} - 807878066 x + 1982119441$ |
$12$ |
[0,6] |
$5^{9}\cdot 7^{8}\cdot 37^{8}$ |
$3$ |
$135.860751538$ |
$135.86075153822173$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[26, 78]$ |
$[26, 78]$ |
$10$ |
$5$ |
$128968.468429$ |
| 12.12.117...125.2 |
$x^{12} - x^{11} - 207 x^{10} + 103 x^{9} + 12533 x^{8} + 6018 x^{7} - 276964 x^{6} - 304019 x^{5} + 1919880 x^{4} + 1652000 x^{3} - 4588349 x^{2} - 1082355 x + 1667121$ |
$12$ |
[12,0] |
$3^{6}\cdot 5^{6}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$148.784970252$ |
$148.78497025217644$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[6]$ |
$[2, 2, 2, 2, 2, 2, 6]$ |
$2$ |
$11$ |
$1663878659.32$ |
| 12.0.127...000.1 |
$x^{12} - 54 x^{10} - 112 x^{9} + 1746 x^{8} + 7056 x^{7} - 17540 x^{6} - 173376 x^{5} - 216807 x^{4} + 1592304 x^{3} + 8365674 x^{2} + 16357488 x + 15366196$ |
$12$ |
[0,6] |
$2^{18}\cdot 3^{16}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$149.738287876$ |
$149.73828787623574$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 6126]$ |
$[2, 2, 6126]$ |
$2$ |
$5$ |
$7692.76761765$ |
| 12.12.127...000.2 |
$x^{12} - 114 x^{10} - 112 x^{9} + 4266 x^{8} + 7056 x^{7} - 57220 x^{6} - 102816 x^{5} + 277953 x^{4} + 447664 x^{3} - 381306 x^{2} - 412272 x + 79316$ |
$12$ |
[12,0] |
$2^{18}\cdot 3^{16}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$149.738287876$ |
$149.73828787623574$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 2, 6]$ |
$2$ |
$11$ |
$529834364.039$ |
| 12.0.250...461.1 |
$x^{12} - x^{11} + 3 x^{10} - 133 x^{9} - 1176 x^{8} + 6635 x^{7} + 60715 x^{6} - 193903 x^{5} + 401369 x^{4} - 924310 x^{3} + 6418912 x^{2} - 11725616 x + 15667504$ |
$12$ |
[0,6] |
$7^{8}\cdot 61^{11}$ |
$2$ |
$158.471453796$ |
$158.47145379582074$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[7, 21]$ |
$[7, 21]$ |
$2$ |
$5$ |
$735589.745474521$ |
| 12.0.264...433.1 |
$x^{12} - 3 x^{11} - 48 x^{10} + 34 x^{9} + 1869 x^{8} + 3741 x^{7} - 16102 x^{6} - 111708 x^{5} + 28872 x^{4} + 1341344 x^{3} + 7602432 x^{2} + 18345984 x + 30932992$ |
$12$ |
[0,6] |
$3^{18}\cdot 7^{8}\cdot 17^{9}$ |
$3$ |
$159.190543855$ |
$159.19054385459242$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[351030]$ |
$[351030]$ |
$2$ |
$5$ |
$1065625.9379812907$ |
| 12.0.444...277.2 |
$x^{12} - 910 x^{9} + 32487 x^{7} + 175175 x^{6} - 401310 x^{5} - 5685225 x^{4} - 33879482 x^{3} + 198889236 x^{2} + 1116364158 x + 1555999263$ |
$12$ |
[0,6] |
$3^{16}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$166.216872291$ |
$166.2168722913816$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[3, 3, 3, 183]$ |
$[3, 3, 3, 183]$ |
$2$ |
$5$ |
$205471.0974863761$ |
| 12.0.114...000.1 |
$x^{12} + 6 x^{10} - 112 x^{9} + 2106 x^{8} + 7056 x^{7} + 34620 x^{6} - 163296 x^{5} + 277713 x^{4} + 5183024 x^{3} + 53176014 x^{2} + 141829968 x + 318935476$ |
$12$ |
[0,6] |
$2^{18}\cdot 3^{18}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$179.826243515$ |
$179.82624351535432$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 22, 858]$ |
$[2, 2, 22, 858]$ |
$2$ |
$5$ |
$7692.767617649285$ |
| 12.12.114...000.1 |
$x^{12} - 174 x^{10} - 112 x^{9} + 9666 x^{8} + 7056 x^{7} - 190020 x^{6} + 48384 x^{5} + 1358793 x^{4} - 2014096 x^{3} + 7074 x^{2} + 1203888 x - 429164$ |
$12$ |
[12,0] |
$2^{18}\cdot 3^{18}\cdot 5^{9}\cdot 7^{8}$ |
$4$ |
$179.826243515$ |
$179.82624351535432$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[78]$ |
$[2, 2, 2, 78]$ |
$2$ |
$11$ |
$88134875.9395311$ |
| 12.0.197...712.1 |
$x^{12} - 2 x^{11} + 173 x^{10} - 86 x^{9} + 15161 x^{8} + 28594 x^{7} + 603160 x^{6} + 1617696 x^{5} + 5170356 x^{4} - 1028916 x^{3} + 202637835 x^{2} - 314765406 x + 1115758827$ |
$12$ |
[0,6] |
$2^{18}\cdot 3^{6}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$188.199755039$ |
$188.19975503890976$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 2, 2, 1884]$ |
$[2, 2, 2, 2, 2, 2, 1884]$ |
$2$ |
$5$ |
$17569.03784509895$ |
| 12.12.197...712.2 |
$x^{12} - 2 x^{11} - 295 x^{10} + 226 x^{9} + 26705 x^{8} - 9470 x^{7} - 929072 x^{6} + 91080 x^{5} + 12119688 x^{4} + 7614108 x^{3} - 52324353 x^{2} - 78929910 x - 25321113$ |
$12$ |
[12,0] |
$2^{18}\cdot 3^{6}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$188.199755039$ |
$188.19975503890976$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[6]$ |
$[2, 2, 2, 2, 2, 2, 6]$ |
$2$ |
$11$ |
$4910103191.443983$ |
| 12.12.400...493.2 |
$x^{12} - 273 x^{10} - 910 x^{9} + 22932 x^{8} + 133770 x^{7} - 551642 x^{6} - 5457816 x^{5} - 3504774 x^{4} + 64316616 x^{3} + 180629631 x^{2} + 97478199 x - 97103643$ |
$12$ |
[12,0] |
$3^{18}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$199.615984508$ |
$199.61598450849033$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3, 3]$ |
$[6, 6]$ |
$2$ |
$11$ |
$2322316634.755115$ |
| 12.12.107...968.2 |
$x^{12} - 123 x^{10} - 112 x^{9} + 4830 x^{8} + 7056 x^{7} - 70495 x^{6} - 113232 x^{5} + 357546 x^{4} + 484960 x^{3} - 603159 x^{2} - 488544 x - 70379$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 7^{8}\cdot 13^{9}$ |
$4$ |
$216.794308356$ |
$216.79430835601232$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[3]$ |
$[2, 2, 6]$ |
$2$ |
$11$ |
$8271635052.54126$ |
| 12.12.412...153.2 |
$x^{12} - x^{11} - 238 x^{10} + 23 x^{9} + 21754 x^{8} + 12807 x^{7} - 945140 x^{6} - 949147 x^{5} + 19741430 x^{4} + 21488493 x^{3} - 178911218 x^{2} - 122390947 x + 601836187$ |
$12$ |
[12,0] |
$7^{8}\cdot 97^{11}$ |
$2$ |
$242.441027766$ |
$242.44102776559907$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 6]$ |
$[2, 2, 4, 12]$ |
$2$ |
$11$ |
$6938321491.363215$ |
| 12.12.887...104.3 |
$x^{12} - 260 x^{10} + 20306 x^{8} - 448968 x^{6} + 3420664 x^{4} - 7928960 x^{2} + 4542824$ |
$12$ |
[12,0] |
$2^{33}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$258.43178128$ |
$258.43178128034293$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[6]$ |
$[12]$ |
$2$ |
$11$ |
$3643698747.2780952$ |
| 12.0.887...104.3 |
$x^{12} + 260 x^{10} + 20306 x^{8} + 448968 x^{6} + 3420664 x^{4} + 7928960 x^{2} + 4542824$ |
$12$ |
[0,6] |
$2^{33}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$258.43178128$ |
$258.43178128034293$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[153420]$ |
$[153420]$ |
$2$ |
$5$ |
$67617.0856763039$ |
| 12.0.887...104.4 |
$x^{12} + 260 x^{10} + 25298 x^{8} + 1145352 x^{6} + 24342136 x^{4} + 212935424 x^{2} + 459076904$ |
$12$ |
[0,6] |
$2^{33}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$258.43178128$ |
$258.43178128034293$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[28860]$ |
$[28860]$ |
$2$ |
$5$ |
$67617.0856763039$ |
| 12.12.887...104.4 |
$x^{12} - 260 x^{10} + 25298 x^{8} - 1145352 x^{6} + 24342136 x^{4} - 212935424 x^{2} + 459076904$ |
$12$ |
[12,0] |
$2^{33}\cdot 7^{8}\cdot 13^{11}$ |
$3$ |
$258.43178128$ |
$258.43178128034293$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[6]$ |
$[12]$ |
$2$ |
$11$ |
$27502445031.498974$ |
| 12.0.970...712.1 |
$x^{12} + 33 x^{10} - 112 x^{9} + 2646 x^{8} + 7056 x^{7} + 15045 x^{6} - 384048 x^{5} - 2025198 x^{4} + 4133696 x^{3} + 78742341 x^{2} + 219265536 x + 314098021$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{18}\cdot 7^{8}\cdot 13^{9}$ |
$4$ |
$260.356296577$ |
$260.3562965765569$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 12678]$ |
$[2, 2, 2, 2, 12678]$ |
$2$ |
$5$ |
$51098.64134374542$ |
| 12.0.120...952.1 |
$x^{12} - 33 x^{10} - 112 x^{9} + 1575 x^{8} + 7056 x^{7} - 3355 x^{6} - 165312 x^{5} - 167664 x^{4} + 2470720 x^{3} + 17419956 x^{2} + 42136416 x + 63660176$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{16}\cdot 7^{8}\cdot 17^{9}$ |
$4$ |
$265.110575819$ |
$265.1105758191317$ |
✓ |
✓ |
|
$C_{12}$ (as 12T1) |
$[2, 2, 2, 2, 2, 2886]$ |
$[2, 2, 2, 2, 2, 2886]$ |
$2$ |
$5$ |
$1065625.9379812907$ |
| 12.12.108...568.2 |
$x^{12} - 237 x^{10} - 112 x^{9} + 18711 x^{8} + 7056 x^{7} - 557895 x^{6} + 417312 x^{5} + 5918472 x^{4} - 13496224 x^{3} + 6677316 x^{2} + 2837856 x - 2065904$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{18}\cdot 7^{8}\cdot 17^{9}$ |
$4$ |
$318.381087709$ |
$318.38108770918484$ |
|
✓ |
|
$C_{12}$ (as 12T1) |
$[6]$ |
$[2, 2, 2, 2, 2, 2, 6]$ |
$2$ |
$11$ |
$974611109453.5791$ |
| 12.12.182...592.2 |
$x^{12} - 546 x^{10} + 85995 x^{8} - 4971148 x^{6} + 117918255 x^{4} - 1055405169 x^{2} + 2606940973$ |
$12$ |
[12,0] |
$2^{12}\cdot 3^{16}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$332.433744583$ |
$332.4337445827632$ |
|
✓ |
? |
$C_{12}$ (as 12T1) |
$[3, 3]$ |
$[3, 6]$ |
$2$ |
$11$ |
$23488746491.18889$ |
| 12.0.163...328.2 |
$x^{12} + 546 x^{10} + 85995 x^{8} + 3607968 x^{6} + 54939339 x^{4} + 273894075 x^{2} + 175573125$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{18}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$399.231969017$ |
$399.23196901698066$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 6, 53574]$ |
$[2, 6, 53574]$ |
$2$ |
$5$ |
$205471.0974863761$ |
| 12.0.646...816.1 |
$x^{12} - 4 x^{11} + 354 x^{10} - 1312 x^{9} + 53023 x^{8} - 124212 x^{7} + 1718250 x^{6} - 9713916 x^{5} - 217299222 x^{4} + 129181716 x^{3} + 5217672456 x^{2} + 10267949448 x + 11359806849$ |
$12$ |
[0,6] |
$2^{33}\cdot 3^{6}\cdot 7^{8}\cdot 13^{11}$ |
$4$ |
$447.616975468$ |
$447.6169754680814$ |
✓ |
✓ |
? |
$C_{12}$ (as 12T1) |
$[2, 2, 2, 201660]$ |
$[2, 2, 2, 201660]$ |
$2$ |
$5$ |
$67617.0856763039$ |