Normalized defining polynomial
\( x^{12} - 33 x^{10} - 112 x^{9} + 1575 x^{8} + 7056 x^{7} - 3355 x^{6} - 165312 x^{5} - 167664 x^{4} + \cdots + 63660176 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(120538181723674419070377725952\) \(\medspace = 2^{12}\cdot 3^{16}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(265.11\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{4/3}7^{2/3}17^{3/4}\approx 265.1105758191317$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(4284=2^{2}\cdot 3^{2}\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{4284}(1,·)$, $\chi_{4284}(3523,·)$, $\chi_{4284}(1633,·)$, $\chi_{4284}(3931,·)$, $\chi_{4284}(3175,·)$, $\chi_{4284}(781,·)$, $\chi_{4284}(1135,·)$, $\chi_{4284}(3025,·)$, $\chi_{4284}(1891,·)$, $\chi_{4284}(373,·)$, $\chi_{4284}(2041,·)$, $\chi_{4284}(2767,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.78608.1$^{2}$, 12.0.120538181723674419070377725952.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{5873723792}a^{10}-\frac{233455923}{5873723792}a^{9}-\frac{10192011}{734215474}a^{8}-\frac{37325801}{2936861896}a^{7}+\frac{468162947}{5873723792}a^{6}-\frac{1153734393}{5873723792}a^{5}+\frac{240721173}{1468430948}a^{4}-\frac{1406278617}{2936861896}a^{3}-\frac{7797835}{367107737}a^{2}-\frac{129611785}{367107737}a+\frac{143991879}{367107737}$, $\frac{1}{19\!\cdots\!44}a^{11}-\frac{1451912615}{19\!\cdots\!44}a^{10}+\frac{15\!\cdots\!65}{97\!\cdots\!72}a^{9}+\frac{18\!\cdots\!77}{48\!\cdots\!36}a^{8}+\frac{27\!\cdots\!71}{19\!\cdots\!44}a^{7}-\frac{15\!\cdots\!17}{19\!\cdots\!44}a^{6}-\frac{93\!\cdots\!37}{97\!\cdots\!72}a^{5}+\frac{68\!\cdots\!45}{48\!\cdots\!36}a^{4}-\frac{30\!\cdots\!17}{24\!\cdots\!18}a^{3}+\frac{29\!\cdots\!75}{48\!\cdots\!36}a^{2}+\frac{34\!\cdots\!26}{12\!\cdots\!59}a-\frac{32\!\cdots\!33}{12\!\cdots\!59}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2886}$, which has order $92352$ (assuming GRH)
Relative class number: $30784$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{378}{367107737}a^{11}-\frac{879}{367107737}a^{10}-\frac{14868}{367107737}a^{9}+\frac{30495}{734215474}a^{8}+\frac{689346}{367107737}a^{7}+\frac{659278}{367107737}a^{6}-\frac{10771068}{367107737}a^{5}-\frac{66162717}{734215474}a^{4}+\frac{143972836}{367107737}a^{3}+\frac{916447368}{367107737}a^{2}+\frac{2329201392}{367107737}a-\frac{1156605213}{367107737}$, $\frac{6087693192507}{97\!\cdots\!72}a^{11}-\frac{19797830158331}{48\!\cdots\!36}a^{10}-\frac{60910953190077}{97\!\cdots\!72}a^{9}+\frac{98912752513203}{24\!\cdots\!18}a^{8}+\frac{86\!\cdots\!03}{97\!\cdots\!72}a^{7}-\frac{10\!\cdots\!01}{48\!\cdots\!36}a^{6}-\frac{49\!\cdots\!35}{97\!\cdots\!72}a^{5}-\frac{52\!\cdots\!51}{12\!\cdots\!59}a^{4}+\frac{12\!\cdots\!29}{48\!\cdots\!36}a^{3}+\frac{17\!\cdots\!31}{24\!\cdots\!18}a^{2}+\frac{29\!\cdots\!55}{12\!\cdots\!59}a-\frac{50\!\cdots\!11}{12\!\cdots\!59}$, $\frac{894798904581}{48\!\cdots\!36}a^{11}-\frac{2100995845137}{24\!\cdots\!18}a^{10}-\frac{10219230505147}{48\!\cdots\!36}a^{9}+\frac{6627997962999}{24\!\cdots\!18}a^{8}+\frac{11\!\cdots\!01}{48\!\cdots\!36}a^{7}-\frac{428543998912029}{24\!\cdots\!18}a^{6}+\frac{14\!\cdots\!67}{48\!\cdots\!36}a^{5}-\frac{24\!\cdots\!51}{24\!\cdots\!18}a^{4}+\frac{10\!\cdots\!43}{24\!\cdots\!18}a^{3}+\frac{73\!\cdots\!29}{12\!\cdots\!59}a^{2}+\frac{40\!\cdots\!90}{12\!\cdots\!59}a-\frac{37\!\cdots\!45}{12\!\cdots\!59}$, $\frac{11\!\cdots\!39}{48\!\cdots\!36}a^{11}-\frac{31\!\cdots\!59}{48\!\cdots\!36}a^{10}-\frac{41\!\cdots\!81}{48\!\cdots\!36}a^{9}+\frac{17\!\cdots\!81}{24\!\cdots\!18}a^{8}+\frac{21\!\cdots\!45}{48\!\cdots\!36}a^{7}+\frac{12\!\cdots\!45}{48\!\cdots\!36}a^{6}-\frac{33\!\cdots\!81}{48\!\cdots\!36}a^{5}-\frac{24\!\cdots\!11}{12\!\cdots\!59}a^{4}+\frac{25\!\cdots\!87}{24\!\cdots\!18}a^{3}+\frac{61\!\cdots\!04}{12\!\cdots\!59}a^{2}+\frac{14\!\cdots\!42}{12\!\cdots\!59}a+\frac{23\!\cdots\!97}{12\!\cdots\!59}$, $\frac{312621058760037}{48\!\cdots\!36}a^{11}-\frac{15\!\cdots\!13}{24\!\cdots\!18}a^{10}-\frac{33\!\cdots\!27}{48\!\cdots\!36}a^{9}+\frac{23\!\cdots\!70}{12\!\cdots\!59}a^{8}+\frac{99\!\cdots\!49}{48\!\cdots\!36}a^{7}-\frac{14\!\cdots\!67}{24\!\cdots\!18}a^{6}-\frac{32\!\cdots\!89}{48\!\cdots\!36}a^{5}-\frac{26\!\cdots\!93}{12\!\cdots\!59}a^{4}+\frac{28\!\cdots\!75}{24\!\cdots\!18}a^{3}+\frac{56\!\cdots\!73}{12\!\cdots\!59}a^{2}+\frac{16\!\cdots\!34}{12\!\cdots\!59}a+\frac{30\!\cdots\!93}{12\!\cdots\!59}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1065625.9379812907 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1065625.9379812907 \cdot 92352}{2\cdot\sqrt{120538181723674419070377725952}}\cr\approx \mathstrut & 8.72043169080323 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.3969.1, 4.0.78608.1, 6.6.77394297393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
\(3\) | 3.12.16.40 | $x^{12} + 24 x^{11} + 216 x^{10} + 840 x^{9} + 864 x^{8} - 2592 x^{7} - 4482 x^{6} + 8424 x^{5} + 25272 x^{4} + 4968 x^{3} + 29808 x^{2} + 139077$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
\(7\) | 7.12.8.3 | $x^{12} + 245 x^{6} - 1372 x^{3} + 7203$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |