Properties

Label 12.0.120...952.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.205\times 10^{29}$
Root discriminant \(265.11\)
Ramified primes $2,3,7,17$
Class number $92352$ (GRH)
Class group [2, 2, 2, 2, 2, 2886] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176)
 
gp: K = bnfinit(y^12 - 33*y^10 - 112*y^9 + 1575*y^8 + 7056*y^7 - 3355*y^6 - 165312*y^5 - 167664*y^4 + 2470720*y^3 + 17419956*y^2 + 42136416*y + 63660176, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176)
 

\( x^{12} - 33 x^{10} - 112 x^{9} + 1575 x^{8} + 7056 x^{7} - 3355 x^{6} - 165312 x^{5} - 167664 x^{4} + \cdots + 63660176 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(120538181723674419070377725952\) \(\medspace = 2^{12}\cdot 3^{16}\cdot 7^{8}\cdot 17^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(265.11\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{4/3}7^{2/3}17^{3/4}\approx 265.1105758191317$
Ramified primes:   \(2\), \(3\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4284=2^{2}\cdot 3^{2}\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{4284}(1,·)$, $\chi_{4284}(3523,·)$, $\chi_{4284}(1633,·)$, $\chi_{4284}(3931,·)$, $\chi_{4284}(3175,·)$, $\chi_{4284}(781,·)$, $\chi_{4284}(1135,·)$, $\chi_{4284}(3025,·)$, $\chi_{4284}(1891,·)$, $\chi_{4284}(373,·)$, $\chi_{4284}(2041,·)$, $\chi_{4284}(2767,·)$$\rbrace$
This is a CM field.
Reflex fields:  4.0.78608.1$^{2}$, 12.0.120538181723674419070377725952.1$^{30}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{5873723792}a^{10}-\frac{233455923}{5873723792}a^{9}-\frac{10192011}{734215474}a^{8}-\frac{37325801}{2936861896}a^{7}+\frac{468162947}{5873723792}a^{6}-\frac{1153734393}{5873723792}a^{5}+\frac{240721173}{1468430948}a^{4}-\frac{1406278617}{2936861896}a^{3}-\frac{7797835}{367107737}a^{2}-\frac{129611785}{367107737}a+\frac{143991879}{367107737}$, $\frac{1}{19\!\cdots\!44}a^{11}-\frac{1451912615}{19\!\cdots\!44}a^{10}+\frac{15\!\cdots\!65}{97\!\cdots\!72}a^{9}+\frac{18\!\cdots\!77}{48\!\cdots\!36}a^{8}+\frac{27\!\cdots\!71}{19\!\cdots\!44}a^{7}-\frac{15\!\cdots\!17}{19\!\cdots\!44}a^{6}-\frac{93\!\cdots\!37}{97\!\cdots\!72}a^{5}+\frac{68\!\cdots\!45}{48\!\cdots\!36}a^{4}-\frac{30\!\cdots\!17}{24\!\cdots\!18}a^{3}+\frac{29\!\cdots\!75}{48\!\cdots\!36}a^{2}+\frac{34\!\cdots\!26}{12\!\cdots\!59}a-\frac{32\!\cdots\!33}{12\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2886}$, which has order $92352$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $30784$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{378}{367107737}a^{11}-\frac{879}{367107737}a^{10}-\frac{14868}{367107737}a^{9}+\frac{30495}{734215474}a^{8}+\frac{689346}{367107737}a^{7}+\frac{659278}{367107737}a^{6}-\frac{10771068}{367107737}a^{5}-\frac{66162717}{734215474}a^{4}+\frac{143972836}{367107737}a^{3}+\frac{916447368}{367107737}a^{2}+\frac{2329201392}{367107737}a-\frac{1156605213}{367107737}$, $\frac{6087693192507}{97\!\cdots\!72}a^{11}-\frac{19797830158331}{48\!\cdots\!36}a^{10}-\frac{60910953190077}{97\!\cdots\!72}a^{9}+\frac{98912752513203}{24\!\cdots\!18}a^{8}+\frac{86\!\cdots\!03}{97\!\cdots\!72}a^{7}-\frac{10\!\cdots\!01}{48\!\cdots\!36}a^{6}-\frac{49\!\cdots\!35}{97\!\cdots\!72}a^{5}-\frac{52\!\cdots\!51}{12\!\cdots\!59}a^{4}+\frac{12\!\cdots\!29}{48\!\cdots\!36}a^{3}+\frac{17\!\cdots\!31}{24\!\cdots\!18}a^{2}+\frac{29\!\cdots\!55}{12\!\cdots\!59}a-\frac{50\!\cdots\!11}{12\!\cdots\!59}$, $\frac{894798904581}{48\!\cdots\!36}a^{11}-\frac{2100995845137}{24\!\cdots\!18}a^{10}-\frac{10219230505147}{48\!\cdots\!36}a^{9}+\frac{6627997962999}{24\!\cdots\!18}a^{8}+\frac{11\!\cdots\!01}{48\!\cdots\!36}a^{7}-\frac{428543998912029}{24\!\cdots\!18}a^{6}+\frac{14\!\cdots\!67}{48\!\cdots\!36}a^{5}-\frac{24\!\cdots\!51}{24\!\cdots\!18}a^{4}+\frac{10\!\cdots\!43}{24\!\cdots\!18}a^{3}+\frac{73\!\cdots\!29}{12\!\cdots\!59}a^{2}+\frac{40\!\cdots\!90}{12\!\cdots\!59}a-\frac{37\!\cdots\!45}{12\!\cdots\!59}$, $\frac{11\!\cdots\!39}{48\!\cdots\!36}a^{11}-\frac{31\!\cdots\!59}{48\!\cdots\!36}a^{10}-\frac{41\!\cdots\!81}{48\!\cdots\!36}a^{9}+\frac{17\!\cdots\!81}{24\!\cdots\!18}a^{8}+\frac{21\!\cdots\!45}{48\!\cdots\!36}a^{7}+\frac{12\!\cdots\!45}{48\!\cdots\!36}a^{6}-\frac{33\!\cdots\!81}{48\!\cdots\!36}a^{5}-\frac{24\!\cdots\!11}{12\!\cdots\!59}a^{4}+\frac{25\!\cdots\!87}{24\!\cdots\!18}a^{3}+\frac{61\!\cdots\!04}{12\!\cdots\!59}a^{2}+\frac{14\!\cdots\!42}{12\!\cdots\!59}a+\frac{23\!\cdots\!97}{12\!\cdots\!59}$, $\frac{312621058760037}{48\!\cdots\!36}a^{11}-\frac{15\!\cdots\!13}{24\!\cdots\!18}a^{10}-\frac{33\!\cdots\!27}{48\!\cdots\!36}a^{9}+\frac{23\!\cdots\!70}{12\!\cdots\!59}a^{8}+\frac{99\!\cdots\!49}{48\!\cdots\!36}a^{7}-\frac{14\!\cdots\!67}{24\!\cdots\!18}a^{6}-\frac{32\!\cdots\!89}{48\!\cdots\!36}a^{5}-\frac{26\!\cdots\!93}{12\!\cdots\!59}a^{4}+\frac{28\!\cdots\!75}{24\!\cdots\!18}a^{3}+\frac{56\!\cdots\!73}{12\!\cdots\!59}a^{2}+\frac{16\!\cdots\!34}{12\!\cdots\!59}a+\frac{30\!\cdots\!93}{12\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1065625.9379812907 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1065625.9379812907 \cdot 92352}{2\cdot\sqrt{120538181723674419070377725952}}\cr\approx \mathstrut & 8.72043169080323 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 33*x^10 - 112*x^9 + 1575*x^8 + 7056*x^7 - 3355*x^6 - 165312*x^5 - 167664*x^4 + 2470720*x^3 + 17419956*x^2 + 42136416*x + 63660176);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{17}) \), 3.3.3969.1, 4.0.78608.1, 6.6.77394297393.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }$ R ${\href{/padicField/11.12.0.1}{12} }$ ${\href{/padicField/13.3.0.1}{3} }^{4}$ R ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.12.0.1}{12} }$ ${\href{/padicField/31.4.0.1}{4} }^{3}$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.1.0.1}{1} }^{12}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
\(3\) Copy content Toggle raw display 3.12.16.40$x^{12} + 24 x^{11} + 216 x^{10} + 840 x^{9} + 864 x^{8} - 2592 x^{7} - 4482 x^{6} + 8424 x^{5} + 25272 x^{4} + 4968 x^{3} + 29808 x^{2} + 139077$$3$$4$$16$$C_{12}$$[2]^{4}$
\(7\) Copy content Toggle raw display 7.12.8.3$x^{12} + 245 x^{6} - 1372 x^{3} + 7203$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(17\) Copy content Toggle raw display 17.12.9.1$x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$